Skip to content

[Test] : pytorch_vision_meal_v2.md 번역 #3

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 14 additions & 17 deletions pytorch_vision_meal_v2.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,37 +17,34 @@ order: 10
demo-model-link: https://huggingface.co/spaces/pytorch/MEAL-V2
---

We require one additional Python dependency
`timm` 종속 패키지 설치가 필요합니다.

```bash
!pip install timm
```

```python
import torch
# list of models: 'mealv1_resnest50', 'mealv2_resnest50', 'mealv2_resnest50_cutmix', 'mealv2_resnest50_380x380', 'mealv2_mobilenetv3_small_075', 'mealv2_mobilenetv3_small_100', 'mealv2_mobilenet_v3_large_100', 'mealv2_efficientnet_b0'
# load pretrained models, using "mealv2_resnest50_cutmix" as an example
# 모델 종류: 'mealv1_resnest50', 'mealv2_resnest50', 'mealv2_resnest50_cutmix', 'mealv2_resnest50_380x380', 'mealv2_mobilenetv3_small_075', 'mealv2_mobilenetv3_small_100', 'mealv2_mobilenet_v3_large_100', 'mealv2_efficientnet_b0'
# 사전에 학습된 "mealv2_resnest50_cutmix"을 불러오는 예시입니다.
model = torch.hub.load('szq0214/MEAL-V2','meal_v2', 'mealv2_resnest50_cutmix', pretrained=True)
model.eval()
```

All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape `(3 x H x W)`, where `H` and `W` are expected to be at least `224`.
The images have to be loaded in to a range of `[0, 1]` and then normalized using `mean = [0.485, 0.456, 0.406]`
and `std = [0.229, 0.224, 0.225]`.
사전에 학습된 모든 모델은 동일한 방식으로 정규화된 입력 이미지, 즉, `H` 와 `W` 는 최소 `224` 이상인 `(3 x H x W)` 형태의 3-채널 RGB 이미지의 미니 배치를 요구합니다. 이미지를 `[0, 1]` 범위에서 불러온 다음 `mean = [0.485, 0.456, 0.406]` 과 `std = [0.229, 0.224, 0.225]` 를 통해 정규화합니다.

Here's a sample execution.
실행 예시입니다.

```python
# Download an example image from the pytorch website
# 파이토치 웹사이트에서 예제 이미지 다운로드
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
```

```python
# sample execution (requires torchvision)
# 실행 예시 (torchvision 필요)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
Expand All @@ -58,32 +55,32 @@ preprocess = transforms.Compose([
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
input_batch = input_tensor.unsqueeze(0) # 모델에서 요구하는 미니배치 생성

# move the input and model to GPU for speed if available
# 가능하다면 속도를 위해 입력과 모델을 GPU로 옮깁니다.
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')

with torch.no_grad():
output = model(input_batch)
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
# 1000개의 ImageNet 클래스에 대한 신뢰도 점수(confidence score)를 가진 1000 크기의 Tensor
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
# output엔 정규화되지 않은 신뢰도 점수가 있습니다. 확률 값을 얻으려면 softmax를 실행하세요.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)
```

```
# Download ImageNet labels
# ImageNet 레이블 다운로드
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
```

```
# Read the categories
# 카테고리 읽기
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
# 이미지별 Top5 카테고리 조회
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
Expand Down