Skip to content

[ET-VK] De vectorise conv2d pw shader to improve perf. #11182

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 28, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 36 additions & 14 deletions backends/vulkan/runtime/graph/ops/glsl/conv2d_pw.glsl
Original file line number Diff line number Diff line change
Expand Up @@ -88,10 +88,18 @@ void main() {
ipos[i] = pos[i] * stride - padding;
}

vec4 sum[TILE_SIZE_X * TILE_SIZE_Y];
sum[0] = texelFetch(t_bias, ivec2(gpos.z, 0), 0);
for (int i = 1; i < TILE_SIZE_X * TILE_SIZE_Y; ++i) {
sum[i] = sum[0];
// Final output array where each element is a tensor value.
// Tuple of consecutive 4 elements represents a single output texel.
float sum[TILE_SIZE_X * TILE_SIZE_Y * 4];

const vec4 bias = texelFetch(t_bias, ivec2(gpos.z, 0), 0);

// Initialize the output array with the bias value
for (int i = 0; i < TILE_SIZE_X * TILE_SIZE_Y * 4; i += 4) {
sum[i] = bias.x;
sum[i + 1] = bias.y;
sum[i + 2] = bias.z;
sum[i + 3] = bias.w;
}

int z4 = 0;
Expand All @@ -100,14 +108,26 @@ void main() {
// During prepacking, the weight tensor has been permuted so that the
// channel (IC) dim is along the x-axis, and the batch (OC) dim is along
// the z-axis.
const vec4 ktex_0 = texelFetchOffset(t_kernel, ivec2(z, gpos.z), 0, ivec2(0, 0));
const vec4 ktex_1 = texelFetchOffset(t_kernel, ivec2(z, gpos.z), 0, ivec2(1, 0));
const vec4 ktex_2 = texelFetchOffset(t_kernel, ivec2(z, gpos.z), 0, ivec2(2, 0));
const vec4 ktex_3 = texelFetchOffset(t_kernel, ivec2(z, gpos.z), 0, ivec2(3, 0));
float kernel_values[4 * 4]; // 4 channels, 4 elements per channel

// Load kernel values from texels to array
for (int i = 0; i < 4; ++i) {
const vec4 k_tex = texelFetch(t_kernel, ivec2(z + i, gpos.z), 0);
kernel_values[i * 4 + 0] = k_tex.x;
kernel_values[i * 4 + 1] = k_tex.y;
kernel_values[i * 4 + 2] = k_tex.z;
kernel_values[i * 4 + 3] = k_tex.w;
}

#pragma unroll
for (int i = 0; i < TILE_SIZE_X * TILE_SIZE_Y; ++i) {
const vec4 in_tex = texelFetch(t_in, ivec3(ipos[i], z4), 0);
// Load the input texel into an array
float tex_values[4];
tex_values[0] = in_tex.x;
tex_values[1] = in_tex.y;
tex_values[2] = in_tex.z;
tex_values[3] = in_tex.w;

// For 2x2 tile size algorithm works as follows.
// To explain the calculations below, the contents of one in_tex and the
// group of 4 texels loaded from t_kernel are shown:
Expand Down Expand Up @@ -141,18 +161,20 @@ void main() {
//
// which is what is expressed in the following calculations. This is done
// for each output position.
sum[i] = fma(in_tex.xxxx, ktex_0, sum[i]);
sum[i] = fma(in_tex.yyyy, ktex_1, sum[i]);
sum[i] = fma(in_tex.zzzz, ktex_2, sum[i]);
sum[i] = fma(in_tex.wwww, ktex_3, sum[i]);
for (int j = 0; j < 4; ++j) {
sum[i * 4 + j] = tex_values[0] * kernel_values[0 + j] + sum[i * 4 + j];
sum[i * 4 + j] = tex_values[1] * kernel_values[4 + j] + sum[i * 4 + j];
sum[i * 4 + j] = tex_values[2] * kernel_values[8 + j] + sum[i * 4 + j];
sum[i * 4 + j] = tex_values[3] * kernel_values[12 + j] + sum[i * 4 + j];
}
}
}

for (int i = 0; i < TILE_SIZE_X * TILE_SIZE_Y; ++i) {
const uint index = (shared_mem_stride * i) + gl_LocalInvocationIndex;
const ivec3 pos = pos_shared[offset_pos_index(index)];
if (all(lessThan(pos, out_limits.xyz))) {
imageStore(t_out, pos, op(sum[i], out_min, out_max));
imageStore(t_out, pos, op(vec4(sum[i * 4], sum[i * 4 + 1], sum[i * 4 + 2], sum[i * 4 + 3]), out_min, out_max));
}
}
}
Loading