Skip to content

model selection cookbook with image updates #1815

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
May 5, 2025
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
225 changes: 225 additions & 0 deletions examples/partners/model_selection_guide/agent_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,225 @@
from __future__ import annotations
import json, time, uuid, logging, re
from dataclasses import dataclass, asdict, field
from pathlib import Path
from typing import Any, Dict, List
from openai import OpenAI

# --- tool back‑ends -------------------------
from tools import chem_lookup, cost_estimator, outcome_db, literature_search, list_available_chemicals

# ---------- tiny infrastructure helpers --------------------------------------

# Holds run-specific parameters provided by user.
@dataclass
class Context:
compound: str
goal: str
budget: float
time_h: int
previous: str
client: OpenAI
run_id: str = field(default_factory=lambda: uuid.uuid4().hex[:8])

def prompt_vars(self):
return {
"compound": self.compound,
"goal": self.goal,
"budget": self.budget,
"time_h": self.time_h,
"previous": self.previous,
}

# -- Function‑calling tool manifest --------------------

def load_tools():
return [
{
"type": "function",
"function": {
"name": "chem_lookup",
"description": "Mock function to look up chemical properties.",
"parameters": {
"type": "object",
"properties": {
"chemical_name": {
"type": "string",
"description": "The name of the chemical to look up."
},
"property": {
"type": "string",
"description": "Optional specific property to retrieve (e.g., 'melting_point'). If None, returns all properties."
}
},
"required": ["chemical_name"]
}
}
},
{
"type": "function",
"function": {
"name": "cost_estimator",
"description": "Mock function to estimate the cost of reagents and procedures.",
"parameters": {
"type": "object",
"properties": {
"reagents": {
"type": "array",
"description": "List of reagents, where each reagent is a dictionary with 'name', 'amount', and 'unit'.",
"items": {
"type": "object",
"properties": {
"name": {"type": "string", "description": "Name of the reagent."},
"amount": {"type": "number", "description": "Amount of the reagent."},
"unit": {"type": "string", "description": "Unit for the amount (e.g., 'g', 'mg', 'kg')."}
},
"required": ["name", "amount", "unit"]
}
},
"equipment": {
"type": "array",
"description": "Optional list of equipment items used.",
"items": {"type": "string"}
},
"duration_hours": {
"type": "number",
"description": "Optional duration of the procedure in hours for labor cost calculation."
}
},
}
}
},
{
"type": "function",
"function": {
"name": "outcome_db",
"description": "Mock function to query the database of past experiment outcomes.",
"parameters": {
"type": "object",
"properties": {
"compound": {
"type": "string",
"description": "The chemical compound name to query past experiments for."
},
"parameter": {
"type": "string",
"description": "Optional specific parameter to filter experiments by (e.g., 'yield', 'temperature')."
},
"limit": {
"type": "integer",
"description": "Maximum number of experiment results to return (default: 5)."
}
},
"required": ["compound"]
}
}
},
{
"type": "function",
"function": {
"name": "literature_search",
"description": "Mock function to search scientific literature for relevant information.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query (keywords) for the literature search."
},
"filter": {
"type": "string",
"description": "Optional filter string, potentially including year (e.g., '2023') or journal name."
},
"limit": {
"type": "integer",
"description": "Maximum number of search results to return (default: 3)."
}
},
"required": ["query"]
}
}
},
{
"type": "function",
"function": {
"name": "list_available_chemicals",
"description": "Provides a list of all chemical names available in the database.",
"parameters": {
"type": "object",
"properties": {},
# No parameters needed for this tool
}
}
}
]

# -- minimal logger -----------------------------------------------------------

def log_json(stage: str, data: Any, ctx: Context):
Path("logs").mkdir(exist_ok=True)
p = Path("logs") / f"{ctx.run_id}.log"
with p.open("a", encoding="utf-8") as f:
f.write(json.dumps({"ts": time.time(), "stage": stage, "data": data}, indent=2) + "\n")

# -- JSON extractor -----------------------------------------------------

def _parse_json(text: str) -> Dict[str, Any]:
try:
return json.loads(text)
except json.JSONDecodeError:
# try to rescue JSON from a ```json ...``` block
m = re.search(r"```(?:json)?\\s*(.*?)```", text, re.S)
if m:
try:
return json.loads(m.group(1))
except json.JSONDecodeError:
pass # fall-through to raw
return {"raw": text} # give caller *something* parsable


# -- tool call handler --------------------------------------------------------

def _dispatch_tool(name: str, args: Dict[str, Any]):
"""Run the local Python implementation of a tool.
If the model supplied bad / missing arguments, return an error JSON instead
of raising – so the conversation can continue."""
try:
return {
"chem_lookup": chem_lookup,
"cost_estimator": cost_estimator,
"outcome_db": outcome_db,
"literature_search": literature_search,
"list_available_chemicals": list_available_chemicals,
}[name](**args)
except TypeError as e:
# log & surface the problem back to the model in a structured way
logging.warning(f"Tool {name} failed: {e}")
return {"tool_error": str(e), "supplied_args": args}

# -- unified OpenAI call w/ recursive tool handling ---------------------------

def call_openai(client: OpenAI, model: str, system: str, user: str, ctx: Context):
messages = [
{"role": "system", "content": system},
{"role": "user", "content": user},
]
while True:
resp = client.chat.completions.create(
model=model,
messages=messages,
tools=load_tools(),
tool_choice="auto",
)
msg = resp.choices[0].message
messages.append(msg.model_dump(exclude_unset=True))
if not msg.tool_calls:
log_json(model, msg.content, ctx)
return _parse_json(msg.content)
# handle first tool call, then loop again
for tc in msg.tool_calls:
result = _dispatch_tool(tc.function.name, json.loads(tc.function.arguments))
messages.append({
"role": "tool", "tool_call_id": tc.id,
"content": json.dumps(result)
})

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading