Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions benchmark/python/benchmark_e2e.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,14 @@
generator.generate_next_token()
return tokenizer.decode(generator.get_sequence(0))

# Use prompt length to get pre-defined prompt
def get_prompt_by_length(prompt_length):
json_path = "prompts.json"
with open(json_path) as prompts_file:
content = prompts_file.read()
data = json.load(content)
return data[f"{prompt_length}"]

def get_target_pip_package_version(target_pip_package_name_list):
# get package name and version
import pkg_resources
Expand Down Expand Up @@ -218,7 +226,7 @@
# Get user arguments
num_repetitions = args.repetitions
temperature = 1.0

Check warning

Code scanning / CodeQL

Variable defined multiple times Warning test

This assignment to 'tokens' is unnecessary as it is
redefined
before this value is used.
This assignment to 'tokens' is unnecessary as it is
redefined
before this value is used.
This assignment to 'tokens' is unnecessary as it is
redefined
before this value is used.

Check warning

Code scanning / CodeQL

Variable defined multiple times Warning test

This assignment to 'prompt' is unnecessary as it is
redefined
before this value is used.
This assignment to 'prompt' is unnecessary as it is
redefined
before this value is used.
This assignment to 'prompt' is unnecessary as it is
redefined
before this value is used.
# Get tokenizer, and model
if args.verbose: print("Loading model... ")
model=og.Model(f'{args.input_folder}')
Expand All @@ -232,6 +240,18 @@
# use random tokens instead of generating a prompt using the model and then tokenizing it
tokens = np.random.randint(100, size=(batch_size, prompt_length))
prompt = [tokenizer.decode(tokens[0])] * batch_size
elif args.use_prompt_set:
prompt = [get_prompt_by_length(prompt_length)] * batch_size
tokens = tokenizer.encode_batch(prompt)

if len(tokens) > max_length:
# Shorten the inputs from (batch_size, tokenized_length) to (batch_size, requested_length)
tokens = tokens[:, :max_length]
elif len(tokens) < max_length:
# Lengthen the inputs from (batch_size, tokenized_length) to (batch_size, requested_length)
tokens_first_col = tokens[:, 0].unsqueeze(0).T
for _ in range(max_length - len(tokens)):
tokens = np.hstack((tokens_first_col, tokens))
else:
prompt = [generate_prompt(model, tokenizer, prompt_length, args.use_graph_capture)] * batch_size
tokens = tokenizer.encode_batch(prompt)
Expand Down Expand Up @@ -424,6 +444,7 @@
parser.add_argument('-mn', '--model_name', type=str, default='model_name', help='Model name defined by users')
parser.add_argument('-pr', '--precision', type=str, default='fp16', help='Model precision for metrics info')
parser.add_argument('--use_random_tokens', action='store_true', help='Use random tokens instead of generating a prompt')
parser.add_argument('--use_prompt_set', action='store_true', help='Use pre-generated prompt set instead of generating a prompt')
args = parser.parse_args()

# check max_lengths
Expand Down
Loading
Loading