You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<pclass="caption"><spanclass="caption-text"><strong>Figure 1. A sample data set with a linear relationship</strong> [<aclass="reference external" href="/code/overview/linear_regression/linear_regression.py">code</a>]</span></p>
220
+
<pclass="caption"><spanclass="caption-text"><strong>Figure 1. A sample data set with a linear relationship</strong> [<aclass="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression.py">code</a>]</span></p>
<pclass="caption"><spanclass="caption-text"><strong>Figure 2. The data set from Figure 1 with a line of best fit</strong> [<aclass="reference external" href="/code/overview/linear_regression/linear_regression_lobf.py">code</a>]</span></p>
235
+
<pclass="caption"><spanclass="caption-text"><strong>Figure 2. The data set from Figure 1 with a line of best fit</strong> [<aclass="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression_lobf.py">code</a>]</span></p>
236
236
<divclass="legend">
237
237
</div>
238
238
</div>
@@ -258,7 +258,7 @@ <h2><a class="toc-backref" href="#id19">When to Use</a><a class="headerlink" hre
258
258
relationship so linear regression would not be a good choice.</p>
<pclass="caption"><spanclass="caption-text"><strong>Figure3. A sample data set without a linear relationship</strong> [<aclass="reference external" href="/code/overview/linear_regression/not_linear_regression.py">code</a>]</span></p>
261
+
<pclass="caption"><spanclass="caption-text"><strong>Figure3. A sample data set without a linear relationship</strong> [<aclass="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/not_linear_regression.py">code</a>]</span></p>
262
262
<divclass="legend">
263
263
</div>
264
264
</div>
@@ -271,7 +271,7 @@ <h2><a class="toc-backref" href="#id19">When to Use</a><a class="headerlink" hre
<pclass="caption"><spanclass="caption-text"><strong>Figure 4. A sample data set that follows an exponential curve</strong> [<aclass="reference external" href="/code/overview/linear_regression/exponential_regression.py">code</a>]</span></p>
274
+
<pclass="caption"><spanclass="caption-text"><strong>Figure 4. A sample data set that follows an exponential curve</strong> [<aclass="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/exponential_regression.py">code</a>]</span></p>
275
275
<divclass="legend">
276
276
</div>
277
277
</div>
@@ -280,7 +280,7 @@ <h2><a class="toc-backref" href="#id19">When to Use</a><a class="headerlink" hre
<h2><aclass="toc-backref" href="#id24">Code</a><aclass="headerlink" href="#code" title="Permalink to this headline">¶</a></h2>
368
-
<p>This module’s main code is available in the <aclass="reference external" href="/code/overview/linear_regression/linear_regression_lobf.py">linear_regression_lobf.py</a> file.</p>
368
+
<p>This module’s main code is available in the <aclass="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression_lobf.py">linear_regression_lobf.py</a> file.</p>
369
369
<p>All figures in this module were created with simple modifications of the
<p>The relevant code is available in the <aclass="reference external" href="/code/supervised/Naive_Bayes/gaussian.py">gaussian.py</a> file.</p>
326
+
<p>The relevant code is available in the <aclass="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/gaussian.py">gaussian.py</a> file.</p>
327
327
<p>In the code, we try and guess a color from given RGB percentages. We create
328
328
some data to work with where each data point represents an RGB triple. The
329
329
values of the triples are decimals ranging from 0 to 1 and each has a color
@@ -365,7 +365,7 @@ <h3><a class="toc-backref" href="#id13">Multinomial Model (Discrete)</a><a class
365
365
</tr>
366
366
</tbody>
367
367
</table>
368
-
<p>The relevant code is available in the <aclass="reference external" href="/code/supervised/Naive_Bayes/multinomial.py">multinomial.py</a> file.</p>
368
+
<p>The relevant code is available in the <aclass="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/multinomial.py">multinomial.py</a> file.</p>
369
369
<p>The code is based on our fruit example. In the code, we try and guess a fruit
370
370
from given characteristics. We create some data to work with where each data
371
371
point is a triple representing characteristics of a fruit namely size, weight,
@@ -410,7 +410,7 @@ <h3><a class="toc-backref" href="#id14">Bernoulli Model (Discrete)</a><a class="
410
410
</tr>
411
411
</tbody>
412
412
</table>
413
-
<p>The relevant code is available in the <aclass="reference external" href="/code/supervised/Naive_Bayes/bernoulli.py">bernoulli.py</a> file.</p>
413
+
<p>The relevant code is available in the <aclass="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/bernoulli.py">bernoulli.py</a> file.</p>
414
414
<p>In the code, we try and guess if something is a duck or not based on certain
415
415
characteristics it has. We create some data to work with where each data point
416
416
is a triple representing the characteristics: walks like a duck, talks like a
0 commit comments