Skip to content

Commit 6531343

Browse files
committed
update
1 parent 9c2c814 commit 6531343

File tree

11 files changed

+27
-27
lines changed

11 files changed

+27
-27
lines changed
Binary file not shown.
Binary file not shown.
0 Bytes
Binary file not shown.
1.49 KB
Binary file not shown.

docs/build/html/_sources/content/overview/linear-regression.rst.txt

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ shows a data set with a linear relationship.
3232

3333
**Figure 1. A sample data set with a linear relationship** [`code`__]
3434

35-
.. __: /code/overview/linear_regression/linear_regression.py
35+
.. __: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression.py
3636

3737
Our goal is to find the line that best models the path of the data points
3838
called a line of best fit. The equation in *Equation 1*, is an example of a
@@ -49,7 +49,7 @@ through it.
4949

5050
**Figure 2. The data set from Figure 1 with a line of best fit** [`code`__]
5151

52-
.. __: /code/overview/linear_regression/linear_regression_lobf.py
52+
.. __: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression_lobf.py
5353

5454
Let’s break it down. We already know that x is the input value and y is our
5555
predicted output. a₀ and a₁ describe the shape of our line. a₀ is called the
@@ -80,7 +80,7 @@ relationship so linear regression would not be a good choice.
8080

8181
**Figure3. A sample data set without a linear relationship** [`code`__]
8282

83-
.. __: /code/overview/linear_regression/not_linear_regression.py
83+
.. __: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/not_linear_regression.py
8484

8585
It is worth noting that sometimes you can apply transformations to data so
8686
that it appears to be linear. For example, you could apply a logarithm to
@@ -97,7 +97,7 @@ transformed to have a linear relationship.
9797

9898
**Figure 4. A sample data set that follows an exponential curve** [`code`__]
9999

100-
.. __: /code/overview/linear_regression/exponential_regression.py
100+
.. __: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/exponential_regression.py
101101

102102
*Figure 5* is the same data after transforming the output variable with a
103103
logarithm.
@@ -107,7 +107,7 @@ logarithm.
107107
**Figure 5. The data set from Figure 4 after applying a logarithm to the
108108
output variable** [`code`__]
109109

110-
.. __: /code/overview/linear_regression/exponential_regression_transformed.py
110+
.. __: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/exponential_regression_transformed.py
111111

112112

113113
*************
@@ -124,7 +124,7 @@ for one such prediction.
124124
**Figure 6. The plot from Figure 2 with the cost of one prediction
125125
emphasized** [`code`__]
126126

127-
.. __: /code/overview/linear_regression/linear_regression_cost.py
127+
.. __: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression_cost.py
128128

129129
Two common terms that appear in cost functions are the **error** and
130130
**squared error**. The error [*Equation 2*] is how far away from the actual
@@ -206,12 +206,12 @@ Code
206206
****
207207
This module's main code is available in the linear_regression_lobf.py_ file.
208208

209-
.. _linear_regression_lobf.py: /code/overview/linear_regression/linear_regression_lobf.py
209+
.. _linear_regression_lobf.py: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression_lobf.py
210210

211211
All figures in this module were created with simple modifications of the
212212
linear_regression.py_ code.
213213

214-
.. _linear_regression.py: /code/overview/linear_regression/linear_regression.py
214+
.. _linear_regression.py: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression.py
215215

216216
In the code, we analyze a data set with a linear relationship. We split the
217217
data into a training set to train our model and a testing set to test its

docs/build/html/_sources/content/supervised/bayes.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -121,11 +121,11 @@ when features are not counts and include decimal values.
121121
**Figure 2. A normal distribution with the iconic bell curve shape**
122122
[`code`__]
123123

124-
.. __: /code/supervised/Naive_Bayes/bell_curve.py
124+
.. __: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/bell_curve.py
125125

126126
The relevant code is available in the gaussian.py_ file.
127127

128-
.. _gaussian.py: /code/supervised/Naive_Bayes/gaussian.py
128+
.. _gaussian.py: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/gaussian.py
129129

130130
In the code, we try and guess a color from given RGB percentages. We create
131131
some data to work with where each data point represents an RGB triple. The
@@ -154,7 +154,7 @@ should use a Bernoulli model instead.
154154

155155
The relevant code is available in the multinomial.py_ file.
156156

157-
.. _multinomial.py: /code/supervised/Naive_Bayes/multinomial.py
157+
.. _multinomial.py: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/multinomial.py
158158

159159
The code is based on our fruit example. In the code, we try and guess a fruit
160160
from given characteristics. We create some data to work with where each data
@@ -186,7 +186,7 @@ Bernoulli model.
186186

187187
The relevant code is available in the bernoulli.py_ file.
188188

189-
.. _bernoulli.py: /code/supervised/Naive_Bayes/bernoulli.py
189+
.. _bernoulli.py: https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/bernoulli.py
190190

191191
In the code, we try and guess if something is a duck or not based on certain
192192
characteristics it has. We create some data to work with where each data point

docs/build/html/_sources/credentials/LICENSE.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ LICENSE
33

44
MIT License
55

6-
Copyright (c) 2017 Amirsina Torfi
6+
Copyright (c) 2019 Amirsina Torfi
77

88
Permission is hereby granted, free of charge, to any person obtaining a copy
99
of this software and associated documentation files (the "Software"), to deal

docs/build/html/content/overview/linear-regression.html

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -217,7 +217,7 @@ <h2><a class="toc-backref" href="#id18">Overview</a><a class="headerlink" href="
217217
shows a data set with a linear relationship.</p>
218218
<div class="figure" id="id7">
219219
<img alt="../../_images/LR.png" src="../../_images/LR.png" />
220-
<p class="caption"><span class="caption-text"><strong>Figure 1. A sample data set with a linear relationship</strong> [<a class="reference external" href="/code/overview/linear_regression/linear_regression.py">code</a>]</span></p>
220+
<p class="caption"><span class="caption-text"><strong>Figure 1. A sample data set with a linear relationship</strong> [<a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression.py">code</a>]</span></p>
221221
<div class="legend">
222222
</div>
223223
</div>
@@ -232,7 +232,7 @@ <h2><a class="toc-backref" href="#id18">Overview</a><a class="headerlink" href="
232232
through it.</p>
233233
<div class="figure" id="id9">
234234
<img alt="../../_images/LR_LOBF.png" src="../../_images/LR_LOBF.png" />
235-
<p class="caption"><span class="caption-text"><strong>Figure 2. The data set from Figure 1 with a line of best fit</strong> [<a class="reference external" href="/code/overview/linear_regression/linear_regression_lobf.py">code</a>]</span></p>
235+
<p class="caption"><span class="caption-text"><strong>Figure 2. The data set from Figure 1 with a line of best fit</strong> [<a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression_lobf.py">code</a>]</span></p>
236236
<div class="legend">
237237
</div>
238238
</div>
@@ -258,7 +258,7 @@ <h2><a class="toc-backref" href="#id19">When to Use</a><a class="headerlink" hre
258258
relationship so linear regression would not be a good choice.</p>
259259
<div class="figure" id="id10">
260260
<img alt="../../_images/Not_Linear.png" src="../../_images/Not_Linear.png" />
261-
<p class="caption"><span class="caption-text"><strong>Figure3. A sample data set without a linear relationship</strong> [<a class="reference external" href="/code/overview/linear_regression/not_linear_regression.py">code</a>]</span></p>
261+
<p class="caption"><span class="caption-text"><strong>Figure3. A sample data set without a linear relationship</strong> [<a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/not_linear_regression.py">code</a>]</span></p>
262262
<div class="legend">
263263
</div>
264264
</div>
@@ -271,7 +271,7 @@ <h2><a class="toc-backref" href="#id19">When to Use</a><a class="headerlink" hre
271271
transformed to have a linear relationship.</p>
272272
<div class="figure" id="id11">
273273
<img alt="../../_images/Exponential.png" src="../../_images/Exponential.png" />
274-
<p class="caption"><span class="caption-text"><strong>Figure 4. A sample data set that follows an exponential curve</strong> [<a class="reference external" href="/code/overview/linear_regression/exponential_regression.py">code</a>]</span></p>
274+
<p class="caption"><span class="caption-text"><strong>Figure 4. A sample data set that follows an exponential curve</strong> [<a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/exponential_regression.py">code</a>]</span></p>
275275
<div class="legend">
276276
</div>
277277
</div>
@@ -280,7 +280,7 @@ <h2><a class="toc-backref" href="#id19">When to Use</a><a class="headerlink" hre
280280
<div class="figure" id="id12">
281281
<img alt="../../_images/Exponential_Transformed.png" src="../../_images/Exponential_Transformed.png" />
282282
<p class="caption"><span class="caption-text"><strong>Figure 5. The data set from Figure 4 after applying a logarithm to the
283-
output variable</strong> [<a class="reference external" href="/code/overview/linear_regression/exponential_regression_transformed.py">code</a>]</span></p>
283+
output variable</strong> [<a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/exponential_regression_transformed.py">code</a>]</span></p>
284284
<div class="legend">
285285
</div>
286286
</div>
@@ -295,7 +295,7 @@ <h2><a class="toc-backref" href="#id20">Cost Function</a><a class="headerlink" h
295295
<div class="figure" id="id13">
296296
<img alt="../../_images/Cost.png" src="../../_images/Cost.png" />
297297
<p class="caption"><span class="caption-text"><strong>Figure 6. The plot from Figure 2 with the cost of one prediction
298-
emphasized</strong> [<a class="reference external" href="/code/overview/linear_regression/linear_regression_cost.py">code</a>]</span></p>
298+
emphasized</strong> [<a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression_cost.py">code</a>]</span></p>
299299
<div class="legend">
300300
</div>
301301
</div>
@@ -365,9 +365,9 @@ <h3><a class="toc-backref" href="#id23">Gradient Descent</a><a class="headerlink
365365
</div>
366366
<div class="section" id="code">
367367
<h2><a class="toc-backref" href="#id24">Code</a><a class="headerlink" href="#code" title="Permalink to this headline"></a></h2>
368-
<p>This module’s main code is available in the <a class="reference external" href="/code/overview/linear_regression/linear_regression_lobf.py">linear_regression_lobf.py</a> file.</p>
368+
<p>This module’s main code is available in the <a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression_lobf.py">linear_regression_lobf.py</a> file.</p>
369369
<p>All figures in this module were created with simple modifications of the
370-
<a class="reference external" href="/code/overview/linear_regression/linear_regression.py">linear_regression.py</a> code.</p>
370+
<a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression/linear_regression.py">linear_regression.py</a> code.</p>
371371
<p>In the code, we analyze a data set with a linear relationship. We split the
372372
data into a training set to train our model and a testing set to test its
373373
accuracy. You may have guessed that the model used is based on linear

docs/build/html/content/supervised/bayes.html

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -319,11 +319,11 @@ <h3><a class="toc-backref" href="#id12">Gaussian Model (Continuous)</a><a class=
319319
<div class="figure" id="id4">
320320
<img alt="../../_images/Bell_Curve.png" src="../../_images/Bell_Curve.png" />
321321
<p class="caption"><span class="caption-text"><strong>Figure 2. A normal distribution with the iconic bell curve shape</strong>
322-
[<a class="reference external" href="/code/supervised/Naive_Bayes/bell_curve.py">code</a>]</span></p>
322+
[<a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/bell_curve.py">code</a>]</span></p>
323323
<div class="legend">
324324
</div>
325325
</div>
326-
<p>The relevant code is available in the <a class="reference external" href="/code/supervised/Naive_Bayes/gaussian.py">gaussian.py</a> file.</p>
326+
<p>The relevant code is available in the <a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/gaussian.py">gaussian.py</a> file.</p>
327327
<p>In the code, we try and guess a color from given RGB percentages. We create
328328
some data to work with where each data point represents an RGB triple. The
329329
values of the triples are decimals ranging from 0 to 1 and each has a color
@@ -365,7 +365,7 @@ <h3><a class="toc-backref" href="#id13">Multinomial Model (Discrete)</a><a class
365365
</tr>
366366
</tbody>
367367
</table>
368-
<p>The relevant code is available in the <a class="reference external" href="/code/supervised/Naive_Bayes/multinomial.py">multinomial.py</a> file.</p>
368+
<p>The relevant code is available in the <a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/multinomial.py">multinomial.py</a> file.</p>
369369
<p>The code is based on our fruit example. In the code, we try and guess a fruit
370370
from given characteristics. We create some data to work with where each data
371371
point is a triple representing characteristics of a fruit namely size, weight,
@@ -410,7 +410,7 @@ <h3><a class="toc-backref" href="#id14">Bernoulli Model (Discrete)</a><a class="
410410
</tr>
411411
</tbody>
412412
</table>
413-
<p>The relevant code is available in the <a class="reference external" href="/code/supervised/Naive_Bayes/bernoulli.py">bernoulli.py</a> file.</p>
413+
<p>The relevant code is available in the <a class="reference external" href="https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes/bernoulli.py">bernoulli.py</a> file.</p>
414414
<p>In the code, we try and guess if something is a duck or not based on certain
415415
characteristics it has. We create some data to work with where each data point
416416
is a triple representing the characteristics: walks like a duck, talks like a

docs/build/html/credentials/LICENSE.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -170,7 +170,7 @@
170170
<div class="section" id="license">
171171
<h1>LICENSE<a class="headerlink" href="#license" title="Permalink to this headline"></a></h1>
172172
<p>MIT License</p>
173-
<p>Copyright (c) 2017 Amirsina Torfi</p>
173+
<p>Copyright (c) 2019 Amirsina Torfi</p>
174174
<p>Permission is hereby granted, free of charge, to any person obtaining a copy
175175
of this software and associated documentation files (the “Software”), to deal
176176
in the Software without restriction, including without limitation the rights

docs/source/credentials/LICENSE.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ LICENSE
33

44
MIT License
55

6-
Copyright (c) 2017 Amirsina Torfi
6+
Copyright (c) 2019 Amirsina Torfi
77

88
Permission is hereby granted, free of charge, to any person obtaining a copy
99
of this software and associated documentation files (the "Software"), to deal

0 commit comments

Comments
 (0)