@@ -121,11 +121,11 @@ when features are not counts and include decimal values.
121
121
**Figure 2. A normal distribution with the iconic bell curve shape **
122
122
[`code `__]
123
123
124
- .. __ : /code/supervised/Naive_Bayes/bell_curve.py
124
+ .. __ : https://github.com/machinelearningmindset/machine-learning-course/blob/master /code/supervised/Naive_Bayes/bell_curve.py
125
125
126
126
The relevant code is available in the gaussian.py _ file.
127
127
128
- .. _gaussian.py : /code/supervised/Naive_Bayes/gaussian.py
128
+ .. _gaussian.py : https://github.com/machinelearningmindset/machine-learning-course/blob/master /code/supervised/Naive_Bayes/gaussian.py
129
129
130
130
In the code, we try and guess a color from given RGB percentages. We create
131
131
some data to work with where each data point represents an RGB triple. The
@@ -154,7 +154,7 @@ should use a Bernoulli model instead.
154
154
155
155
The relevant code is available in the multinomial.py _ file.
156
156
157
- .. _multinomial.py : /code/supervised/Naive_Bayes/multinomial.py
157
+ .. _multinomial.py : https://github.com/machinelearningmindset/machine-learning-course/blob/master /code/supervised/Naive_Bayes/multinomial.py
158
158
159
159
The code is based on our fruit example. In the code, we try and guess a fruit
160
160
from given characteristics. We create some data to work with where each data
@@ -186,7 +186,7 @@ Bernoulli model.
186
186
187
187
The relevant code is available in the bernoulli.py _ file.
188
188
189
- .. _bernoulli.py : /code/supervised/Naive_Bayes/bernoulli.py
189
+ .. _bernoulli.py : https://github.com/machinelearningmindset/machine-learning-course/blob/master /code/supervised/Naive_Bayes/bernoulli.py
190
190
191
191
In the code, we try and guess if something is a duck or not based on certain
192
192
characteristics it has. We create some data to work with where each data point
0 commit comments