Skip to content

Add 80% mask, 10% random in n-gram MLM #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pretrain.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ def __call__(self, instance):
# For masked Language Models
masked_tokens, masked_pos, tokens = _sample_mask(tokens, self.mask_alpha,
self.mask_beta, self.max_gram,
goal_num_predict=n_pred)
goal_num_predict=n_pred, vocab_words=self.vocab_words)

masked_weights = [1]*len(masked_tokens)

Expand Down
38 changes: 29 additions & 9 deletions utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
import numpy as np
import torch

from random import random as rand

def set_seeds(seed):
"set random seeds"
Expand Down Expand Up @@ -105,7 +106,7 @@ def _is_start_piece(piece):
return False

def _sample_mask(seg, mask_alpha, mask_beta,
max_gram=3, goal_num_predict=85):
max_gram=3, goal_num_predict=85, vocab_words=None):
# try to n-gram masking SpanBERT(Joshi et al., 2019)
# 3-gram implementation
seg_len = len(seg)
Expand Down Expand Up @@ -164,12 +165,31 @@ def _sample_mask(seg, mask_alpha, mask_beta,
mask[i] = True
num_predict += 1

tokens, masked_tokens, masked_pos = [], [], []
for i in range(seg_len):
if mask[i] and (seg[i] != '[CLS]' and seg[i] != '[SEP]'):
masked_tokens.append(seg[i])
masked_pos.append(i)
tokens.append('[MASK]')
else:
tokens.append(seg[i])
tokens, masked_tokens, masked_pos = seg, [], []
i = 0
while i < seg_len:
if mask[i]:
if rand() < 0.8:
i = set_mask(i, seg_len, mask, tokens, masked_tokens, masked_pos, vocab_words, 0)
elif rand() < 0.5: # 10%
i = set_mask(i, seg_len, mask, tokens, masked_tokens, masked_pos, vocab_words, 1)
else: # 10%
i = set_mask(i, seg_len, mask, tokens, masked_tokens, masked_pos, vocab_words, 2)
i += 1

return masked_tokens, masked_pos, tokens

def set_mask(start, end, mask, tokens, masked_tokens, masked_pos, vocab_words, mode):
for j in range(start, end):
if not mask[j]:
break
if tokens[j] == '[CLS]' or tokens[j] == '[SEP]':
continue
masked_tokens.append(tokens[j])
masked_pos.append(j)
if mode == 0:
tokens[j] = '[MASK]'
elif mode == 1:
tokens[j] = get_random_word(vocab_words)
start += 1
return start