Skip to content

codeperfectplus/transmeet

Repository files navigation

🎙️ TransMeet — AI-Powered Meeting Summarizer

Turn your meeting recordings into clear, structured minutes using LLMs like Groq Whisper and Google Speech Recognition.


🚀 Features

  • Audio Transcription — Automatically convert .wav or .mp3 files into text
  • 🧠 LLM-Powered Summarization — Generate concise and structured meeting minutes
  • 🔍 Groq & Google Support — Choose between Groq Whisper models or Google Speech API
  • 🪓 Automatic Chunking — Splits large files intelligently for smoother transcription
  • ⚙️ Fully Customizable — Pick your preferred transcription and summarization models
  • 🧾 CLI & Python API — Use it from the terminal or integrate in your Python workflows
  • 📁 Clean Output — Saves transcripts and summaries neatly in your desired folder

📦 Installation

pip install transmeet

Dependencies

sudo apt-get update && sudo apt-get install -y ffmpeg gcc && sudo apt-get clean && sudo rm -rf /var/lib/apt/lists/*

🔐 Setup

Set your GROQ API Key/OPENAI API Key in your environment variables.

export GROQ_API_KEY=your_groq_api_key

To make this permanent:

echo 'export GROQ_API_KEY=your_groq_api_key' >> ~/.bashrc

If using OPENAI, set the OPENAI_API_KEY similarly. For Google Speech, no API key is needed; it uses the default model.


🧑‍💻 How to Use

✅ Option 1: Import as a Python Module

from transmeet import generate_meeting_transcript_and_minutes

generate_meeting_transcript_and_minutes(
    meeting_audio_file="/path/to/audio.wav",
    output_dir="complete_path_to_output_dir/",
    transcription_client="groq",  # or "openai"
    transcription_model="whisper-large-v3-turbo", # change as per your need
    llm_client="groq",  # or "openai"
    llm_model="llama-3.3-70b-versatile", # change as per your need
)

This will save two files in your output directory:

  • transcription_<timestamp>.txt
  • meeting_minutes_<timestamp>.md

🔧 Option 2: Use the CLI

🔹 Basic Usage (Default: GROQ)

transmeet -i /path/to/audio.wav -o output/

🔸 Advanced Usage

transmeet \
  -i /path/to/audio.wav \
  -o output/ \
  --transcription-client groq \
  --transcription-model whisper-large-v3-turbo \
  --llm-client groq \
  --llm-model llama-3.3-70b-versatile \

🗂️ Output Structure

output/
├── transcriptions/
│   └── transcription_20250510_213038.txt
├── meeting_minutes/
│   └── meeting_minutes_20250510_213041.md

🧪 Supported Formats

  • .wav
  • .mp3

⚙️ CLI Options

Argument Description
-i, --audio-path Path to the input audio file
-o, --output-dir Output directory (default: output/)
--transcription-client groq or google (default: groq)
--transcription-model e.g., whisper-large-v3-turbo
--llm-client groq or openai (default: groq)
--llm-model e.g., llama-3.3-70b-versatile

🤖 LLM Models

  • Groq Whisper: whisper-large, whisper-large-v3-turbo, etc.
  • Google Speech: Model defaults to their API standard
  • LLMs for minutes: llama-3, mixtral, gpt-4, etc. (Groq/OpenAI)

📋 Roadmap

  • Add support for multi-language meetings
  • Speaker diarization support
  • Upload directly to Notion or Google Docs
  • Slack/Discord bots

🧑‍🎓 Author

Deepak Raj 👨‍💻 GitHub • 🌐 LinkedIN


🤝 Contributing

Pull requests are welcome! Found a bug or need a feature? Open an issue or submit a PR.


⚖️ License

MIT License

About

LLM based meeting summarization tool

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published