Skip to content

⚡️ Speed up function sorter by 80% #342

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Conversation

codeflash-ai[bot]
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jun 17, 2025

📄 80% (0.80x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.34 seconds 1.85 seconds (best of 5 runs)

📝 Explanation and details

Here is a greatly optimized version of your sorting function. You are currently using an unoptimized bubble sort, which is both time- and cache-inefficient for large lists. There are several ways to improve its performance without changing the function signature or output.

  • Use Python's built-in sort(), which is highly optimized (Timsort; O(n log n)).
  • If you must keep the sorting "manual", at least optimize bubble sort by adding an "early exit" if no swaps are made, as well as shrinking the unsorted region each pass.
  • Avoid repeated len(arr) calls in the loop.

Below, option 1 uses built-in sort (fastest in practice), and option 2 is an optimized in-place bubble sort in case you need to keep the bubble sort code style.


Option 1: Use Python’s built-in sort (Recommended, unless manual sort required)


Option 2: Optimized Bubble Sort (If you want to keep the basic algorithm)

Notes on optimization:

  • Early exit: If no swaps, stop early (best-case O(n)).
  • Avoid unnecessary work: Don't recheck sorted tail.
  • Tuple swap: Pythonic, can be faster than three assignments.

Recommendation

  • If you only care about speed and not the sorting algorithm: Use Option 1.
  • If you're required to use bubble sort or similar: Use Option 2.

Either will be vastly faster than your original code.
Your main slowness was due to the O(n²) inefficient bubble sort.

Let me know if you need it adapted for e.g. descending order or for specific data types!

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 59 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests Details and Performance Breakdown
  • benchmarks/test_benchmark_bubble_sort.py

    • test_sort2: 7.10ms -> 4.33ms $\color{green}(64\%)$
  • test_bubble_sort.py

    • test_sort: 810ms -> 549ms $\color{green}(0.47\%)$
  • test_bubble_sort_conditional.py

    • test_sort: 5.62μs -> 5.46μs $\color{green}(0.03\%)$
  • test_bubble_sort_import.py

    • test_sort: 817ms -> 554ms $\color{green}(0.47\%)$
  • test_bubble_sort_in_class.py

    • TestSorter.test_sort_in_pytest_class: 820ms -> 550ms $\color{green}(0.49\%)$
  • test_bubble_sort_parametrized.py

    • test_sort_parametrized: 498ms -> 248μs $\color{green}(2005.50\%)$
  • test_bubble_sort_parametrized_loop.py

    • test_sort_loop_parametrized: 94.8μs -> 27.5μs $\color{green}(2.45\%)$
Test File Test Name Before After Improvement
benchmarks/test_benchmark_bubble_sort.py test_sort2 7.10 ms 4.33 ms $\color{green}(0.47\%)$
test_bubble_sort.py test_sort 810 ms 549 ms $\color{green}(0.47\%)$
test_bubble_sort_conditional.py test_sort 5.62 μs 5.46 μs $\color{green}(0.03\%)$
test_bubble_sort_import.py test_sort 817 ms 554 ms $\color{green}(0.47\%)$
test_bubble_sort_in_class.py TestSorter.test_sort_in_pytest_class 820 ms 550 ms $\color{green}(0.49\%)$
test_bubble_sort_parametrized.py test_sort_parametrized 498 ms 248 μs $\color{green}(2005.50\%)$
test_bubble_sort_parametrized_loop.py test_sort_loop_parametrized 94.8 μs 27.5 μs $\color{green}(2.45\%)$

📊 Bubble Sort Benchmark Improvements

🧪 Test File 🧬 Test Name ⏱️ Before ⏱️ After 📈 Improvement
benchmarks/test_benchmark_bubble_sort.py test_sort2 7.10 ms 4.33 ms $\color{green}64\%$
test_bubble_sort.py test_sort 810 ms 549 ms $\color{green}0.47\%$
test_bubble_sort_conditional.py test_sort 5.62 μs 5.46 μs $\color{green}0.03\%$
test_bubble_sort_import.py test_sort 817 ms 554 ms $\color{green}0.47\%$
test_bubble_sort_in_class.py TestSorter.test_sort_in_pytest_class 820 ms 550 ms $\color{green}0.49\%$
test_bubble_sort_parametrized.py test_sort_parametrized 498 ms 248 μs 🚀 $\color{green}2005.50\%$
test_bubble_sort_parametrized_loop.py test_sort_loop_parametrized 94.8 μs 27.5 μs 🚀 $\color{green}2.45\%$
🌀 Generated Regression Tests Details and Performance Breakdown
import random  # used for generating large test cases
import string  # used for string sorting tests
import sys  # used for special value edge cases

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# -------------------- Basic Test Cases --------------------

def test_sorter_empty_list():
    # Test sorting an empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.08μs -> 3.71μs (0.10%)

def test_sorter_single_element():
    # Test sorting a single-element list
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.25μs -> 3.96μs (0.07%)

def test_sorter_sorted_list():
    # Test sorting an already sorted list
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.79μs -> 4.25μs (0.13%)

def test_sorter_reverse_sorted_list():
    # Test sorting a reverse-sorted list
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.83μs -> 5.04μs (-0.04%)

def test_sorter_unsorted_list():
    # Test sorting a typical unsorted list
    arr = [3, 1, 4, 2, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.00μs -> 4.71μs (0.06%)

def test_sorter_duplicates():
    # Test sorting a list with duplicate elements
    arr = [2, 3, 2, 1, 3]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.46μs -> 4.79μs (-0.07%)

def test_sorter_negative_numbers():
    # Test sorting a list with negative numbers
    arr = [-2, -5, 0, 3, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.21μs -> 4.62μs (-0.09%)

def test_sorter_all_equal():
    # Test sorting a list where all elements are equal
    arr = [7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.83μs -> 4.12μs (-0.07%)

def test_sorter_floats():
    # Test sorting a list with floating point numbers
    arr = [3.2, 1.5, 2.8, 1.5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.88μs -> 5.46μs (0.08%)

def test_sorter_strings():
    # Test sorting a list of strings
    arr = ["banana", "apple", "cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.75μs -> 4.58μs (0.04%)

def test_sorter_mixed_case_strings():
    # Test sorting a list of strings with mixed cases
    arr = ["Banana", "apple", "Cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.50μs -> 4.62μs (-0.03%)

# -------------------- Edge Test Cases --------------------

def test_sorter_large_negative_and_positive():
    # Test sorting a list with large negative and positive numbers
    arr = [sys.maxsize, -sys.maxsize - 1, 0, 999999, -999999]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.17μs -> 6.00μs (0.03%)

def test_sorter_with_inf_and_nan():
    # Test sorting a list with float('inf'), float('-inf'), and float('nan')
    arr = [float('inf'), 1.0, float('-inf'), float('nan'), 0.0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.75μs -> 5.38μs (0.07%)

def test_sorter_already_sorted_large():
    # Test sorting a large already sorted list
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 18.3ms -> 51.3μs (355.18%)

def test_sorter_reverse_sorted_large():
    # Test sorting a large reverse-sorted list
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 31.0ms -> 19.8ms (0.56%)

def test_sorter_all_same_large():
    # Test sorting a large list with all the same value
    arr = [42] * 1000
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 17.6ms -> 49.5μs (355.20%)

def test_sorter_minimal_and_maximal_ints():
    # Test sorting a list with Python's min and max integer values
    arr = [0, sys.maxsize, -sys.maxsize-1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.25μs -> 5.04μs (0.04%)

def test_sorter_unicode_strings():
    # Test sorting a list of unicode strings
    arr = ["éclair", "apple", "Éclair", "banana"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.25μs -> 5.75μs (0.09%)

def test_sorter_empty_strings():
    # Test sorting a list with empty strings
    arr = ["", "a", "", "b"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.79μs -> 4.67μs (0.03%)

def test_sorter_boolean_values():
    # Test sorting a list of boolean values
    arr = [True, False, True, False]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.92μs -> 4.79μs (0.03%)

def test_sorter_mutation():
    # Test that the function mutates the input list (since it sorts in-place)
    arr = [3, 2, 1]
    sorter(arr)

# -------------------- Large Scale Test Cases --------------------

def test_sorter_large_random_integers():
    # Test sorting a large list of random integers
    arr = [random.randint(-100000, 100000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 27.7ms -> 16.6ms (0.67%)

def test_sorter_large_random_floats():
    # Test sorting a large list of random floats
    arr = [random.uniform(-1e6, 1e6) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 25.9ms -> 16.0ms (0.62%)

def test_sorter_large_random_strings():
    # Test sorting a large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=8)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 29.1ms -> 17.2ms (0.70%)

def test_sorter_large_duplicates():
    # Test sorting a large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 24.6ms -> 14.2ms (0.73%)

def test_sorter_large_alternating():
    # Test sorting a large list with alternating pattern
    arr = [i % 2 for i in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 21.2ms -> 9.65ms (1.19%)

# -------------------- Miscellaneous/Robustness --------------------

def test_sorter_type_error_on_mixed_types():
    # Test that sorting a list with mixed incomparable types raises TypeError
    arr = [1, "a", 2]
    with pytest.raises(TypeError):
        sorter(arr.copy())

def test_sorter_type_error_on_unorderable():
    # Test that sorting a list with unorderable types raises TypeError
    arr = [object(), object()]
    # All objects are unorderable unless __lt__ is defined
    with pytest.raises(TypeError):
        sorter(arr.copy())
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import random  # used for generating large random lists
import string  # used for string sorting tests
import sys  # used for maxsize/minsize edge cases

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# --- Basic Test Cases ---

def test_sorter_basic_sorted():
    # Already sorted list should remain unchanged
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.42μs -> 4.25μs (0.27%)

def test_sorter_basic_reverse():
    # Reverse sorted list should be sorted ascendingly
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.75μs -> 5.21μs (-0.09%)

def test_sorter_basic_unsorted():
    # Unsorted list with unique integers
    arr = [3, 1, 4, 5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.38μs -> 4.79μs (-0.09%)

def test_sorter_basic_duplicates():
    # List with duplicate values
    arr = [2, 3, 2, 1, 3]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.33μs -> 4.67μs (-0.07%)

def test_sorter_basic_single_element():
    # Single-element list should return the same element
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.71μs -> 4.00μs (-0.07%)

def test_sorter_basic_two_elements():
    # Two-element list, unsorted
    arr = [7, 3]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.79μs -> 4.25μs (-0.11%)

def test_sorter_basic_negative_numbers():
    # List with negative numbers
    arr = [0, -1, -3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.38μs -> 4.96μs (-0.12%)

def test_sorter_basic_mixed_signs():
    # List with both positive and negative numbers
    arr = [-10, 5, 0, -2, 3]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.12μs -> 4.92μs (0.04%)

def test_sorter_basic_floats():
    # List with float values
    arr = [3.1, 2.4, 5.6, 1.2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.79μs -> 5.62μs (0.03%)

def test_sorter_basic_mixed_int_float():
    # List with both int and float values
    arr = [3, 1.5, 2, 4.5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.96μs -> 5.21μs (-0.05%)

def test_sorter_basic_strings():
    # List of strings should be sorted lexicographically
    arr = ["banana", "apple", "cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.17μs -> 4.71μs (-0.12%)

def test_sorter_basic_strings_case():
    # Strings with different cases
    arr = ["Banana", "apple", "Cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.96μs -> 4.46μs (-0.11%)

def test_sorter_basic_empty():
    # Empty list should return empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.38μs -> 3.83μs (-0.12%)

# --- Edge Test Cases ---

def test_sorter_edge_all_equal():
    # All elements are the same
    arr = [7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.88μs -> 4.21μs (-0.08%)

def test_sorter_edge_large_numbers():
    # List with very large and very small integers
    arr = [sys.maxsize, -sys.maxsize-1, 0, 999999999, -999999999]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.88μs -> 6.12μs (-0.04%)

def test_sorter_edge_large_floats():
    # List with very large and very small floats
    arr = [1e308, -1e308, 0.0, 1.5e307, -1.5e307]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 8.67μs -> 7.88μs (0.10%)

def test_sorter_edge_nan_inf():
    # List with float('nan'), float('inf'), float('-inf')
    arr = [float('nan'), float('inf'), float('-inf'), 0.0]
    # Sorting with NaN is special: NaN is not equal to anything, including itself.
    # Python's sort puts NaN at the end.
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.46μs -> 4.83μs (-0.08%)

def test_sorter_edge_empty_string():
    # List with empty string and other strings
    arr = ["", "a", "b"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.96μs -> 4.46μs (-0.11%)

def test_sorter_edge_unicode_strings():
    # Unicode string sorting
    arr = ["éclair", "apple", "Éclair", "banana"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.46μs -> 5.62μs (-0.03%)

def test_sorter_edge_single_characters():
    # List of single characters
    arr = ['z', 'a', 'm', 'b']
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.50μs -> 4.88μs (-0.08%)

def test_sorter_edge_mixed_types_raises():
    # List with mixed incomparable types should raise TypeError
    arr = [1, "a", 3]
    with pytest.raises(TypeError):
        sorter(arr.copy())

def test_sorter_edge_nested_lists_raises():
    # List with nested lists should raise TypeError
    arr = [1, [2, 3], 4]
    with pytest.raises(TypeError):
        sorter(arr.copy())

def test_sorter_edge_none_in_list():
    # List with None and numbers should raise TypeError
    arr = [None, 1, 2]
    with pytest.raises(TypeError):
        sorter(arr.copy())

def test_sorter_edge_mutation():
    # The function should mutate the input list (in-place)
    arr = [2, 1]
    sorter(arr)

# --- Large Scale Test Cases ---

def test_sorter_large_sorted():
    # Large already sorted list (performance and correctness)
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 18.4ms -> 51.6μs (354.79%)

def test_sorter_large_reverse():
    # Large reverse sorted list (performance and correctness)
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 31.0ms -> 19.7ms (0.57%)

def test_sorter_large_random():
    # Large random list (performance and correctness)
    arr = random.sample(range(1000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.7ms -> 17.5ms (0.64%)

def test_sorter_large_duplicates():
    # Large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 24.7ms -> 13.9ms (0.77%)

def test_sorter_large_strings():
    # Large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 29.5ms -> 17.4ms (0.69%)

def test_sorter_large_negative_numbers():
    # Large list with negative numbers
    arr = [random.randint(-10000, 0) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 27.3ms -> 15.6ms (0.75%)

def test_sorter_large_mixed_floats():
    # Large list with mixed floats and ints
    arr = [random.uniform(-1000, 1000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 27.1ms -> 16.0ms (0.70%)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-mc13udav and push.

Codeflash

Here is a greatly optimized version of your sorting function. You are currently using an **unoptimized bubble sort**, which is both time- and cache-inefficient for large lists. There are several ways to improve its performance **without changing the function signature or output**.

- Use Python's built-in `sort()`, which is highly optimized (Timsort; O(n log n)).  
- If you must keep the sorting "manual", at least optimize bubble sort by adding an "early exit" if no swaps are made, as well as shrinking the unsorted region each pass.  
- Avoid repeated `len(arr)` calls in the loop.

Below, **option 1** uses built-in sort (fastest in practice), and **option 2** is an optimized in-place bubble sort in case you need to keep the bubble sort code style.

---

### Option 1: Use Python’s built-in sort (**Recommended, unless manual sort required**)


---

### Option 2: Optimized Bubble Sort (If you want to keep the basic algorithm)

**Notes on optimization:**
- **Early exit**: If no swaps, stop early (best-case O(n)).
- **Avoid unnecessary work**: Don't recheck sorted tail.
- **Tuple swap**: Pythonic, can be faster than three assignments.

---

### Recommendation

- If you only care about speed and not the sorting algorithm: **Use Option 1**.
- If you're required to use bubble sort or similar: **Use Option 2.**

**Either will be vastly faster than your original code.**  
Your main slowness was due to the O(n²) inefficient bubble sort.  

Let me know if you need it adapted for e.g. descending order or for specific data types!
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jun 17, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 June 17, 2025 22:38
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-mc13udav branch June 18, 2025 03:15
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by Codeflash AI
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant