Skip to content

test: parametrize test_array_functions #678

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
414 changes: 223 additions & 191 deletions python/datafusion/tests/test_functions.py
Original file line number Diff line number Diff line change
@@ -209,324 +209,356 @@ def test_math_functions():
)


def test_array_functions():
data = [[1.0, 2.0, 3.0, 3.0], [4.0, 5.0, 3.0], [6.0]]
ctx = SessionContext()
batch = pa.RecordBatch.from_arrays([np.array(data, dtype=object)], names=["arr"])
df = ctx.create_dataframe([[batch]])
def py_indexof(arr, v):
try:
return arr.index(v) + 1
except ValueError:
return np.nan


def py_indexof(arr, v):
def py_arr_remove(arr, v, n=None):
new_arr = arr[:]
found = 0
while found != n:
try:
return arr.index(v) + 1
new_arr.remove(v)
found += 1
except ValueError:
return np.nan

def py_arr_remove(arr, v, n=None):
new_arr = arr[:]
found = 0
while found != n:
try:
new_arr.remove(v)
found += 1
except ValueError:
break

return new_arr

def py_arr_replace(arr, from_, to, n=None):
new_arr = arr[:]
found = 0
while found != n:
try:
idx = new_arr.index(from_)
new_arr[idx] = to
found += 1
except ValueError:
break

return new_arr

def py_arr_resize(arr, size, value):
arr = np.asarray(arr)
return np.pad(
arr,
[(0, size - arr.shape[0])],
"constant",
constant_values=value,
)
break

def py_flatten(arr):
result = []
for elem in arr:
if isinstance(elem, list):
result.extend(py_flatten(elem))
else:
result.append(elem)
return result
return new_arr

col = column("arr")
test_items = [

def py_arr_replace(arr, from_, to, n=None):
new_arr = arr[:]
found = 0
while found != n:
try:
idx = new_arr.index(from_)
new_arr[idx] = to
found += 1
except ValueError:
break

return new_arr


def py_arr_resize(arr, size, value):
arr = np.asarray(arr)
return np.pad(
arr,
[(0, size - arr.shape[0])],
"constant",
constant_values=value,
)


def py_flatten(arr):
result = []
for elem in arr:
if isinstance(elem, list):
result.extend(py_flatten(elem))
else:
result.append(elem)
return result


@pytest.mark.parametrize(
("stmt", "py_expr"),
[
[
f.array_append(col, literal(99.0)),
lambda: [np.append(arr, 99.0) for arr in data],
lambda col: f.array_append(col, literal(99.0)),
lambda data: [np.append(arr, 99.0) for arr in data],
],
[
f.array_push_back(col, literal(99.0)),
lambda: [np.append(arr, 99.0) for arr in data],
lambda col: f.array_push_back(col, literal(99.0)),
lambda data: [np.append(arr, 99.0) for arr in data],
],
[
f.list_append(col, literal(99.0)),
lambda: [np.append(arr, 99.0) for arr in data],
lambda col: f.list_append(col, literal(99.0)),
lambda data: [np.append(arr, 99.0) for arr in data],
],
[
f.list_push_back(col, literal(99.0)),
lambda: [np.append(arr, 99.0) for arr in data],
lambda col: f.list_push_back(col, literal(99.0)),
lambda data: [np.append(arr, 99.0) for arr in data],
],
[
f.array_concat(col, col),
lambda: [np.concatenate([arr, arr]) for arr in data],
lambda col: f.array_concat(col, col),
lambda data: [np.concatenate([arr, arr]) for arr in data],
],
[
f.array_cat(col, col),
lambda: [np.concatenate([arr, arr]) for arr in data],
lambda col: f.array_cat(col, col),
lambda data: [np.concatenate([arr, arr]) for arr in data],
],
[
f.array_dims(col),
lambda: [[len(r)] for r in data],
lambda col: f.array_dims(col),
lambda data: [[len(r)] for r in data],
],
[
f.array_distinct(col),
lambda: [list(set(r)) for r in data],
lambda col: f.array_distinct(col),
lambda data: [list(set(r)) for r in data],
],
[
f.list_distinct(col),
lambda: [list(set(r)) for r in data],
lambda col: f.list_distinct(col),
lambda data: [list(set(r)) for r in data],
],
[
f.list_dims(col),
lambda: [[len(r)] for r in data],
lambda col: f.list_dims(col),
lambda data: [[len(r)] for r in data],
],
[
f.array_element(col, literal(1)),
lambda: [r[0] for r in data],
lambda col: f.array_element(col, literal(1)),
lambda data: [r[0] for r in data],
],
[
f.array_extract(col, literal(1)),
lambda: [r[0] for r in data],
lambda col: f.array_extract(col, literal(1)),
lambda data: [r[0] for r in data],
],
[
f.list_element(col, literal(1)),
lambda: [r[0] for r in data],
lambda col: f.list_element(col, literal(1)),
lambda data: [r[0] for r in data],
],
[
f.list_extract(col, literal(1)),
lambda: [r[0] for r in data],
lambda col: f.list_extract(col, literal(1)),
lambda data: [r[0] for r in data],
],
[
f.array_length(col),
lambda: [len(r) for r in data],
lambda col: f.array_length(col),
lambda data: [len(r) for r in data],
],
[
f.list_length(col),
lambda: [len(r) for r in data],
lambda col: f.list_length(col),
lambda data: [len(r) for r in data],
],
[
f.array_has(col, literal(1.0)),
lambda: [1.0 in r for r in data],
lambda col: f.array_has(col, literal(1.0)),
lambda data: [1.0 in r for r in data],
],
[
f.array_has_all(col, f.make_array(*[literal(v) for v in [1.0, 3.0, 5.0]])),
lambda: [np.all([v in r for v in [1.0, 3.0, 5.0]]) for r in data],
lambda col: f.array_has_all(
col, f.make_array(*[literal(v) for v in [1.0, 3.0, 5.0]])
),
lambda data: [np.all([v in r for v in [1.0, 3.0, 5.0]]) for r in data],
],
[
f.array_has_any(col, f.make_array(*[literal(v) for v in [1.0, 3.0, 5.0]])),
lambda: [np.any([v in r for v in [1.0, 3.0, 5.0]]) for r in data],
lambda col: f.array_has_any(
col, f.make_array(*[literal(v) for v in [1.0, 3.0, 5.0]])
),
lambda data: [np.any([v in r for v in [1.0, 3.0, 5.0]]) for r in data],
],
[
f.array_position(col, literal(1.0)),
lambda: [py_indexof(r, 1.0) for r in data],
lambda col: f.array_position(col, literal(1.0)),
lambda data: [py_indexof(r, 1.0) for r in data],
],
[
f.array_indexof(col, literal(1.0)),
lambda: [py_indexof(r, 1.0) for r in data],
lambda col: f.array_indexof(col, literal(1.0)),
lambda data: [py_indexof(r, 1.0) for r in data],
],
[
f.list_position(col, literal(1.0)),
lambda: [py_indexof(r, 1.0) for r in data],
lambda col: f.list_position(col, literal(1.0)),
lambda data: [py_indexof(r, 1.0) for r in data],
],
[
f.list_indexof(col, literal(1.0)),
lambda: [py_indexof(r, 1.0) for r in data],
lambda col: f.list_indexof(col, literal(1.0)),
lambda data: [py_indexof(r, 1.0) for r in data],
],
[
f.array_positions(col, literal(1.0)),
lambda: [[i + 1 for i, _v in enumerate(r) if _v == 1.0] for r in data],
lambda col: f.array_positions(col, literal(1.0)),
lambda data: [[i + 1 for i, _v in enumerate(r) if _v == 1.0] for r in data],
],
[
f.list_positions(col, literal(1.0)),
lambda: [[i + 1 for i, _v in enumerate(r) if _v == 1.0] for r in data],
lambda col: f.list_positions(col, literal(1.0)),
lambda data: [[i + 1 for i, _v in enumerate(r) if _v == 1.0] for r in data],
],
[
f.array_ndims(col),
lambda: [np.array(r).ndim for r in data],
lambda col: f.array_ndims(col),
lambda data: [np.array(r).ndim for r in data],
],
[
f.list_ndims(col),
lambda: [np.array(r).ndim for r in data],
lambda col: f.list_ndims(col),
lambda data: [np.array(r).ndim for r in data],
],
[
f.array_prepend(literal(99.0), col),
lambda: [np.insert(arr, 0, 99.0) for arr in data],
lambda col: f.array_prepend(literal(99.0), col),
lambda data: [np.insert(arr, 0, 99.0) for arr in data],
],
[
f.array_push_front(literal(99.0), col),
lambda: [np.insert(arr, 0, 99.0) for arr in data],
lambda col: f.array_push_front(literal(99.0), col),
lambda data: [np.insert(arr, 0, 99.0) for arr in data],
],
[
f.list_prepend(literal(99.0), col),
lambda: [np.insert(arr, 0, 99.0) for arr in data],
lambda col: f.list_prepend(literal(99.0), col),
lambda data: [np.insert(arr, 0, 99.0) for arr in data],
],
[
f.list_push_front(literal(99.0), col),
lambda: [np.insert(arr, 0, 99.0) for arr in data],
lambda col: f.list_push_front(literal(99.0), col),
lambda data: [np.insert(arr, 0, 99.0) for arr in data],
],
[
f.array_pop_back(col),
lambda: [arr[:-1] for arr in data],
lambda col: f.array_pop_back(col),
lambda data: [arr[:-1] for arr in data],
],
[
f.array_pop_front(col),
lambda: [arr[1:] for arr in data],
lambda col: f.array_pop_front(col),
lambda data: [arr[1:] for arr in data],
],
[
f.array_remove(col, literal(3.0)),
lambda: [py_arr_remove(arr, 3.0, 1) for arr in data],
lambda col: f.array_remove(col, literal(3.0)),
lambda data: [py_arr_remove(arr, 3.0, 1) for arr in data],
],
[
f.list_remove(col, literal(3.0)),
lambda: [py_arr_remove(arr, 3.0, 1) for arr in data],
lambda col: f.list_remove(col, literal(3.0)),
lambda data: [py_arr_remove(arr, 3.0, 1) for arr in data],
],
[
f.array_remove_n(col, literal(3.0), literal(2)),
lambda: [py_arr_remove(arr, 3.0, 2) for arr in data],
lambda col: f.array_remove_n(col, literal(3.0), literal(2)),
lambda data: [py_arr_remove(arr, 3.0, 2) for arr in data],
],
[
f.list_remove_n(col, literal(3.0), literal(2)),
lambda: [py_arr_remove(arr, 3.0, 2) for arr in data],
lambda col: f.list_remove_n(col, literal(3.0), literal(2)),
lambda data: [py_arr_remove(arr, 3.0, 2) for arr in data],
],
[
f.array_remove_all(col, literal(3.0)),
lambda: [py_arr_remove(arr, 3.0) for arr in data],
lambda col: f.array_remove_all(col, literal(3.0)),
lambda data: [py_arr_remove(arr, 3.0) for arr in data],
],
[
f.list_remove_all(col, literal(3.0)),
lambda: [py_arr_remove(arr, 3.0) for arr in data],
lambda col: f.list_remove_all(col, literal(3.0)),
lambda data: [py_arr_remove(arr, 3.0) for arr in data],
],
[
f.array_repeat(col, literal(2)),
lambda: [[arr] * 2 for arr in data],
lambda col: f.array_repeat(col, literal(2)),
lambda data: [[arr] * 2 for arr in data],
],
[
f.array_replace(col, literal(3.0), literal(4.0)),
lambda: [py_arr_replace(arr, 3.0, 4.0, 1) for arr in data],
lambda col: f.array_replace(col, literal(3.0), literal(4.0)),
lambda data: [py_arr_replace(arr, 3.0, 4.0, 1) for arr in data],
],
[
f.list_replace(col, literal(3.0), literal(4.0)),
lambda: [py_arr_replace(arr, 3.0, 4.0, 1) for arr in data],
lambda col: f.list_replace(col, literal(3.0), literal(4.0)),
lambda data: [py_arr_replace(arr, 3.0, 4.0, 1) for arr in data],
],
[
f.array_replace_n(col, literal(3.0), literal(4.0), literal(1)),
lambda: [py_arr_replace(arr, 3.0, 4.0, 1) for arr in data],
lambda col: f.array_replace_n(col, literal(3.0), literal(4.0), literal(1)),
lambda data: [py_arr_replace(arr, 3.0, 4.0, 1) for arr in data],
],
[
f.list_replace_n(col, literal(3.0), literal(4.0), literal(2)),
lambda: [py_arr_replace(arr, 3.0, 4.0, 2) for arr in data],
lambda col: f.list_replace_n(col, literal(3.0), literal(4.0), literal(2)),
lambda data: [py_arr_replace(arr, 3.0, 4.0, 2) for arr in data],
],
[
f.array_replace_all(col, literal(3.0), literal(4.0)),
lambda: [py_arr_replace(arr, 3.0, 4.0) for arr in data],
lambda col: f.array_replace_all(col, literal(3.0), literal(4.0)),
lambda data: [py_arr_replace(arr, 3.0, 4.0) for arr in data],
],
[
f.list_replace_all(col, literal(3.0), literal(4.0)),
lambda: [py_arr_replace(arr, 3.0, 4.0) for arr in data],
lambda col: f.list_replace_all(col, literal(3.0), literal(4.0)),
lambda data: [py_arr_replace(arr, 3.0, 4.0) for arr in data],
],
[
f.array_slice(col, literal(2), literal(4)),
lambda: [arr[1:4] for arr in data],
lambda col: f.array_slice(col, literal(2), literal(4)),
lambda data: [arr[1:4] for arr in data],
],
# [
# f.list_slice(col, literal(-1), literal(2)),
# lambda: [arr[-1:2] for arr in data],
# ],
pytest.param(
lambda col: f.list_slice(col, literal(-1), literal(2)),
lambda data: [arr[-1:2] for arr in data],
marks=pytest.mark.xfail,
),
[
f.array_intersect(col, literal([3.0, 4.0])),
lambda: [np.intersect1d(arr, [3.0, 4.0]) for arr in data],
lambda col: f.array_intersect(col, literal([3.0, 4.0])),
lambda data: [np.intersect1d(arr, [3.0, 4.0]) for arr in data],
],
[
f.list_intersect(col, literal([3.0, 4.0])),
lambda: [np.intersect1d(arr, [3.0, 4.0]) for arr in data],
lambda col: f.list_intersect(col, literal([3.0, 4.0])),
lambda data: [np.intersect1d(arr, [3.0, 4.0]) for arr in data],
],
[
f.array_union(col, literal([12.0, 999.0])),
lambda: [np.union1d(arr, [12.0, 999.0]) for arr in data],
lambda col: f.array_union(col, literal([12.0, 999.0])),
lambda data: [np.union1d(arr, [12.0, 999.0]) for arr in data],
],
[
f.list_union(col, literal([12.0, 999.0])),
lambda: [np.union1d(arr, [12.0, 999.0]) for arr in data],
lambda col: f.list_union(col, literal([12.0, 999.0])),
lambda data: [np.union1d(arr, [12.0, 999.0]) for arr in data],
],
[
f.array_except(col, literal([3.0])),
lambda: [np.setdiff1d(arr, [3.0]) for arr in data],
lambda col: f.array_except(col, literal([3.0])),
lambda data: [np.setdiff1d(arr, [3.0]) for arr in data],
],
[
f.list_except(col, literal([3.0])),
lambda: [np.setdiff1d(arr, [3.0]) for arr in data],
lambda col: f.list_except(col, literal([3.0])),
lambda data: [np.setdiff1d(arr, [3.0]) for arr in data],
],
[
f.array_resize(col, literal(10), literal(0.0)),
lambda: [py_arr_resize(arr, 10, 0.0) for arr in data],
lambda col: f.array_resize(col, literal(10), literal(0.0)),
lambda data: [py_arr_resize(arr, 10, 0.0) for arr in data],
],
[
f.list_resize(col, literal(10), literal(0.0)),
lambda: [py_arr_resize(arr, 10, 0.0) for arr in data],
lambda col: f.list_resize(col, literal(10), literal(0.0)),
lambda data: [py_arr_resize(arr, 10, 0.0) for arr in data],
],
[f.flatten(literal(data)), lambda: [py_flatten(data)]],
[
f.range(literal(1), literal(5), literal(2)),
lambda: [np.arange(1, 5, 2)],
lambda col: f.range(literal(1), literal(5), literal(2)),
lambda data: [np.arange(1, 5, 2)],
],
]
],
)
def test_array_functions(stmt, py_expr):
data = [[1.0, 2.0, 3.0, 3.0], [4.0, 5.0, 3.0], [6.0]]
ctx = SessionContext()
batch = pa.RecordBatch.from_arrays([np.array(data, dtype=object)], names=["arr"])
df = ctx.create_dataframe([[batch]])

for stmt, py_expr in test_items:
query_result = df.select(stmt).collect()[0].column(0)
for a, b in zip(query_result, py_expr()):
np.testing.assert_array_almost_equal(
np.array(a.as_py(), dtype=float), np.array(b, dtype=float)
)
col = column("arr")
query_result = df.select(stmt(col)).collect()[0].column(0)
for a, b in zip(query_result, py_expr(data)):
np.testing.assert_array_almost_equal(
np.array(a.as_py(), dtype=float), np.array(b, dtype=float)
)

obj_test_items = [

def test_array_function_flatten():
data = [[1.0, 2.0, 3.0, 3.0], [4.0, 5.0, 3.0], [6.0]]
ctx = SessionContext()
batch = pa.RecordBatch.from_arrays([np.array(data, dtype=object)], names=["arr"])
df = ctx.create_dataframe([[batch]])

stmt = f.flatten(literal(data))
py_expr = [py_flatten(data)]
query_result = df.select(stmt).collect()[0].column(0)
for a, b in zip(query_result, py_expr):
np.testing.assert_array_almost_equal(
np.array(a.as_py(), dtype=float), np.array(b, dtype=float)
)


@pytest.mark.parametrize(
("stmt", "py_expr"),
[
[
f.array_to_string(col, literal(",")),
lambda: [",".join([str(int(v)) for v in r]) for r in data],
f.array_to_string(column("arr"), literal(",")),
lambda data: [",".join([str(int(v)) for v in r]) for r in data],
],
[
f.array_join(col, literal(",")),
lambda: [",".join([str(int(v)) for v in r]) for r in data],
f.array_join(column("arr"), literal(",")),
lambda data: [",".join([str(int(v)) for v in r]) for r in data],
],
[
f.list_to_string(col, literal(",")),
lambda: [",".join([str(int(v)) for v in r]) for r in data],
f.list_to_string(column("arr"), literal(",")),
lambda data: [",".join([str(int(v)) for v in r]) for r in data],
],
[
f.list_join(col, literal(",")),
lambda: [",".join([str(int(v)) for v in r]) for r in data],
f.list_join(column("arr"), literal(",")),
lambda data: [",".join([str(int(v)) for v in r]) for r in data],
],
]

for stmt, py_expr in obj_test_items:
query_result = np.array(df.select(stmt).collect()[0].column(0))
for a, b in zip(query_result, py_expr()):
assert a == b
],
)
def test_array_function_obj_tests(stmt, py_expr):
data = [[1.0, 2.0, 3.0, 3.0], [4.0, 5.0, 3.0], [6.0]]
ctx = SessionContext()
batch = pa.RecordBatch.from_arrays([np.array(data, dtype=object)], names=["arr"])
df = ctx.create_dataframe([[batch]])
query_result = np.array(df.select(stmt).collect()[0].column(0))
for a, b in zip(query_result, py_expr(data)):
assert a == b


def test_string_functions(df):