Enterprise-Ready AI Model Security built on OpenSSF Model Signing
SecureAIML is the "Stripe for model security" - making enterprise-grade AI model protection accessible, user-friendly, and production-ready for every organization.
In the era of AI/ML, model security is critical. SecureAIML wraps the powerful OpenSSF Model Signing standard with an intuitive, enterprise-ready interface that makes securing your ML models as simple as:
pip install secureaimlfrom secureml import SecureModel
import joblib
# Load your model
model = joblib.load("model.pkl")
# Secure it in one line
secure_model = SecureModel(model)
secure_model.sign_and_save("model.sml", identity="[email protected]")
# Load and verify
verified_model = SecureModel.load("model.sml", verify=True)
predictions = verified_model.predict(X_test)- Traditional ML: XGBoost, scikit-learn, LightGBM, CatBoost
- Deep Learning: PyTorch, TensorFlow, JAX, Keras
- Large Language Models: HuggingFace Transformers, GGUF, SafeTensors
- Computer Vision: ONNX, CoreML, TensorRT, OpenVINO
- Audio/Speech: Whisper, Wav2Vec, SpeechT5
- Multimodal: CLIP, DALL-E, GPT-4V, BLIP
- Full integration with OpenSSF Model Signing
- Leverages Sigstore infrastructure
- Industry-standard cryptographic signing
- Keyless signing with OIDC
- Transparent and verifiable signatures
- Hardware Security Module (HSM) integration
- Cloud KMS support (AWS KMS, Azure Key Vault, GCP Cloud KMS)
- Advanced fingerprinting with Merkle trees
- Multi-signature workflows
- Compliance frameworks: SOC2, ISO27001, FIPS 140-2, HIPAA, GDPR
- Comprehensive audit trails and forensics
- Simple, intuitive Pythonic API
- Auto-detection of model types
- Minimal configuration required
- Works with existing ML workflows
- Extensive documentation and examples
from secureml import SecureModel
import joblib
# Train your model (any framework)
from xgboost import XGBClassifier
model = XGBClassifier()
model.fit(X_train, y_train)
# Secure it
secure_model = SecureModel(model)
secure_model.sign_and_save(
"fraud_detection_model.sml",
identity="[email protected]",
version="2.0.0",
description="Production fraud detection model"
)
# Load and verify
model = SecureModel.load("fraud_detection_model.sml", verify=True)
if model.is_verified:
predictions = model.predict(X_test)from secureml.api.advanced import AdvancedSecureModel
from secureml.utils.config import SecurityConfig, SecurityLevel, ComplianceFramework
# Configure enterprise security
config = SecurityConfig.from_level(SecurityLevel.ENTERPRISE)
config.enable_fingerprinting = True
config.enable_merkle_trees = True
config.compliance_frameworks = [ComplianceFramework.SOC2, ComplianceFramework.ISO27001]
# Create advanced secure model
advanced = AdvancedSecureModel(model, config=config)
# Sign with AWS KMS
advanced.add_signature(
identity="[email protected]",
use_cloud_kms=True,
kms_key_id="arn:aws:kms:us-east-1:123456789:key/abc-def",
cloud_provider="aws"
)
# Validate compliance
compliance_report = advanced.validate_compliance(
frameworks=[ComplianceFramework.SOC2, ComplianceFramework.HIPAA],
generate_report=True,
report_path="compliance_report.json"
)
print(f"Compliance Status: {compliance_report['overall_status']}")SecureML is built as an enhancement layer on top of OpenSSF Model Signing:
┌─────────────────────────────────────────────────────┐
│ Your Application │
└─────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────┐
│ SecureML API Layer │
│ • Simple API • Advanced API • CLI │
└─────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────┐
│ SecureML Enterprise Features │
│ • HSM/KMS • Compliance • Audit • Forensics │
└─────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────┐
│ OpenSSF Model Signing (Core) │
│ Sigstore Infrastructure │
└─────────────────────────────────────────────────────┘
SecureML provides four security levels to match your needs:
| Level | Use Case | Features |
|---|---|---|
| BASIC | Development, testing | OpenSSF signing only |
| STANDARD | Production deployments | + Fingerprinting, audit logging |
| ENTERPRISE | Regulated industries | + Merkle trees, threat detection, compliance |
| MAXIMUM | High-security environments | + Encryption, forensics, multi-sig |
SecureML helps you meet regulatory requirements:
- SOC 2: System and Organization Controls
- ISO 27001: Information Security Management
- FIPS 140-2: Cryptographic Module Validation
- HIPAA: Healthcare data protection
- GDPR: EU data protection
- 📦 PyPI Package - Official package on PyPI
- 🚀 Quick Start Guide - Get started in 5 minutes
- 📚 Installation Guide - Installation instructions
- 📖 Usage Guide - Comprehensive usage documentation
- 🔒 Watermarking Features - Model watermarking guide
- 🛡️ Threat Model - Security analysis and limitations
- 🔗 OpenSSF Integration - OpenSSF Model Signing integration
from secureml import SecureModel
import xgboost as xgb
model = xgb.XGBClassifier()
model.fit(X_train, y_train)
secure_model = SecureModel(model)
secure_model.sign_and_save("xgb_model.sml", identity="[email protected]")import torch
from secureml import SecureModel
model = torch.nn.Sequential(...)
torch.save(model.state_dict(), "model.pth")
secure_model = SecureModel.load_from_path("model.pth")
secure_model.sign_and_save("pytorch_model.sml", identity="[email protected]")from transformers import AutoModel
from secureml import SecureModel
model = AutoModel.from_pretrained("bert-base-uncased")
model.save_pretrained("./my_model")
secure_model = SecureModel.load_from_path("./my_model")
secure_model.sign_and_save("bert_model.sml", identity="[email protected]")# Basic installation
pip install secureaiml
# With ML framework support
pip install secureaiml[xgboost,pytorch,sklearn]
# With CLI tools
pip install secureaiml[cli]
# Everything (all ML frameworks + CLI + dev tools)
pip install secureaiml[all]# Sign a model
secureml sign model.pkl --identity "[email protected]" --output model.sml
# Verify a model
secureml verify model.sml
# Get model info
secureml info model.sml
# Validate compliance
secureml compliance model.sml --framework soc2 --framework iso27001
# Generate audit report
secureml audit --start-date 2024-01-01 --end-date 2024-12-31 --output audit.jsonimport mlflow
from secureml.integrations.mlflow_integration import SecureMLflowModel
with mlflow.start_run():
model = train_model()
# Log with SecureML
secure_model = SecureMLflowModel(model)
secure_model.log_model(
"model",
signature=True,
identity="[email protected]"
)from secureml.integrations.huggingface_integration import SecureHFModel
secure_model = SecureHFModel.from_pretrained("bert-base-uncased")
secure_model.sign(identity="[email protected]")
secure_model.push_to_hub("my-org/secure-bert", signed=True)We welcome contributions! Please see CONTRIBUTING.md for details.
For security issues, please see SECURITY.md.
Apache 2.0 - See LICENSE for details.
Built on top of:
- OpenSSF Model Signing
- Sigstore
- The amazing open-source ML community
- 🐛 Issues: GitHub Issues
- 💬 Discussions: GitHub Discussions
- 📖 Documentation: GitHub Docs
- 📦 PyPI: pypi.org/project/secureaiml
SecureAIML is an OWASP project focused on making ML model security accessible to everyone.
- OWASP Page: OWASP SecureML
- GitHub: OWASP/SecureML
SecureAIML - Making AI model security accessible to everyone 🚀
An OWASP Project