Skip to content

Make Hessian sparsity detection work with SCT (prototype) #198

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -16,6 +16,7 @@ PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
ProgressLogging = "33c8b6b6-d38a-422a-b730-caa89a2f386c"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
SparseConnectivityTracer = "9f842d2f-2579-4b1d-911e-f412cf18a3f5"
SparseMatrixColorings = "0a514795-09f3-496d-8182-132a7b665d35"

@@ -36,6 +37,7 @@ PrecompileTools = "1"
ProgressLogging = "0.1"
Random = "1.10"
RecipesBase = "1"
SparseArrays = "1.11.0"
SparseConnectivityTracer = "0.6.13"
SparseMatrixColorings = "0.4.14"
TestItemRunner = "1"
3 changes: 3 additions & 0 deletions src/ModelPredictiveControl.jl
Original file line number Diff line number Diff line change
@@ -3,6 +3,7 @@ module ModelPredictiveControl
using PrecompileTools
using LinearAlgebra
using Random: randn
using SparseArrays

using RecipesBase
using ProgressLogging
@@ -49,6 +50,7 @@ include("state_estim.jl")
include("predictive_control.jl")
include("plot_sim.jl")

#=
@setup_workload begin
# Putting some things in `@setup_workload` instead of `@compile_workload` can reduce the
# size of the precompile file and potentially make loading faster.
@@ -58,5 +60,6 @@ include("plot_sim.jl")
include("precompile.jl")
end
end
=#

end
41 changes: 23 additions & 18 deletions src/controller/construct.jl
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
struct PredictiveControllerBuffer{NT<:Real}
struct PredictiveControllerBuffer{NT<:Real,M<:AbstractMatrix{NT}}
u ::Vector{NT}
Z̃ ::Vector{NT}
D̂ ::Vector{NT}
Ŷ ::Vector{NT}
U ::Vector{NT}
Ẽ ::Matrix{NT}
P̃u::Matrix{NT}
P̃u::M
empty::Vector{NT}
end

@@ -29,14 +29,19 @@ function PredictiveControllerBuffer(
Ẽ = Matrix{NT}(undef, ny*Hp, nZ̃)
P̃u = Matrix{NT}(undef, nu*Hp, nZ̃)
empty = Vector{NT}(undef, 0)
return PredictiveControllerBuffer{NT}(u, Z̃, D̂, Ŷ, U, Ẽ, P̃u, empty)
return PredictiveControllerBuffer{NT,typeof(P̃u)}(u, Z̃, D̂, Ŷ, U, Ẽ, P̃u, empty)
end

"Include all the objective function weights of [`PredictiveController`](@ref)"
struct ControllerWeights{NT<:Real}
M_Hp::Hermitian{NT, Matrix{NT}}
Ñ_Hc::Hermitian{NT, Matrix{NT}}
L_Hp::Hermitian{NT, Matrix{NT}}
struct ControllerWeights{
NT<:Real,
H1<:Hermitian{NT, <:AbstractMatrix{NT}},
H2<:Hermitian{NT, <:AbstractMatrix{NT}},
H3<:Hermitian{NT, <:AbstractMatrix{NT}},
}
M_Hp::H1
Ñ_Hc::H2
L_Hp::H3
E ::NT
iszero_M_Hp::Vector{Bool}
iszero_Ñ_Hc::Vector{Bool}
@@ -46,15 +51,15 @@ struct ControllerWeights{NT<:Real}
model, Hp, Hc, M_Hp, N_Hc, L_Hp, Cwt=Inf, Ewt=0
) where NT<:Real
validate_weights(model, Hp, Hc, M_Hp, N_Hc, L_Hp, Cwt, Ewt)
# convert `Diagonal` to normal `Matrix` if required:
M_Hp = Hermitian(convert(Matrix{NT}, M_Hp), :L)
N_Hc = Hermitian(convert(Matrix{NT}, N_Hc), :L)
L_Hp = Hermitian(convert(Matrix{NT}, L_Hp), :L)
M_Hp = Hermitian(convert.(NT, M_Hp), :L)
N_Hc = Hermitian(convert.(NT, N_Hc), :L)
L_Hp = Hermitian(convert.(NT, L_Hp), :L)
nΔU = size(N_Hc, 1)
C = Cwt
if !isinf(Cwt)
# ΔŨ = [ΔU; ϵ] (ϵ is the slack variable)
Ñ_Hc = Hermitian([N_Hc zeros(NT, nΔU, 1); zeros(NT, 1, nΔU) C], :L)
# Ñ_Hc = Hermitian([N_Hc zeros(NT, nΔU, 1); zeros(NT, 1, nΔU) C], :L)
Ñ_Hc = Hermitian(blockdiag(sparse(N_Hc), sparse(Diagonal([C]))), :L)
else
# ΔŨ = ΔU (only hard constraints)
Ñ_Hc = N_Hc
@@ -64,7 +69,7 @@ struct ControllerWeights{NT<:Real}
iszero_Ñ_Hc = [iszero(Ñ_Hc)]
iszero_L_Hp = [iszero(L_Hp)]
iszero_E = iszero(E)
return new{NT}(M_Hp, Ñ_Hc, L_Hp, E, iszero_M_Hp, iszero_Ñ_Hc, iszero_L_Hp, iszero_E)
return new{NT,typeof(M_Hp),typeof(Ñ_Hc),typeof(L_Hp)}(M_Hp, Ñ_Hc, L_Hp, E, iszero_M_Hp, iszero_Ñ_Hc, iszero_L_Hp, iszero_E)
end
end

@@ -584,10 +589,10 @@ function relaxU(Pu::Matrix{NT}, C_umin, C_umax, nϵ) where NT<:Real
# ϵ impacts Z → U conversion for constraint calculations:
A_Umin, A_Umax = -[Pu C_umin], [Pu -C_umax]
# ϵ has no impact on Z → U conversion for prediction calculations:
P̃u = [Pu zeros(NT, size(Pu, 1))]
P̃u = sparse_hcat(sparse(Pu), spzeros(NT, size(Pu, 1)))
else # Z̃ = Z (only hard constraints)
A_Umin, A_Umax = -Pu, Pu
P̃u = Pu
P̃u = sparse(Pu)
end
return A_Umin, A_Umax, P̃u
end
@@ -621,17 +626,17 @@ bound, which is more precise than a linear inequality constraint. However, it is
convenient to treat it as a linear inequality constraint since the optimizer `OSQP.jl` does
not support pure bounds on the decision variables.
"""
function relaxΔU(PΔu::Matrix{NT}, C_Δumin, C_Δumax, ΔUmin, ΔUmax, nϵ) where NT<:Real
function relaxΔU(PΔu::AbstractMatrix{NT}, C_Δumin, C_Δumax, ΔUmin, ΔUmax, nϵ) where NT<:Real
nZ = size(PΔu, 2)
if nϵ == 1 # Z̃ = [Z; ϵ]
ΔŨmin, ΔŨmax = [ΔUmin; NT[0.0]], [ΔUmax; NT[Inf]] # 0 ≤ ϵ ≤ ∞
A_ϵ = [zeros(NT, 1, nZ) NT[1.0]]
A_ΔŨmin, A_ΔŨmax = -[PΔu C_Δumin; A_ϵ], [PΔu -C_Δumax; A_ϵ]
P̃Δu = [PΔu zeros(NT, size(PΔu, 1), 1); zeros(NT, 1, size(PΔu, 2)) NT[1.0]]
P̃Δu = blockdiag(sparse(PΔu), spdiagm([one(NT)]))
else # Z̃ = Z (only hard constraints)
ΔŨmin, ΔŨmax = ΔUmin, ΔUmax
A_ΔŨmin, A_ΔŨmax = -PΔu, PΔu
P̃Δu = PΔu
P̃Δu = sparse(PΔu)
end
return A_ΔŨmin, A_ΔŨmax, ΔŨmin, ΔŨmax, P̃Δu
end
7 changes: 6 additions & 1 deletion src/controller/execute.jl
Original file line number Diff line number Diff line change
@@ -370,7 +370,12 @@ function obj_nonlinprog!(
end
# --- economic term ---
E_JE = obj_econ(mpc, model, Ue, Ŷe)
return JR̂y + JΔŨ + JR̂u + E_JE
return (
JR̂y +
JΔŨ +
JR̂u +
E_JE
)
end

"No custom nonlinear constraints `gc` by default, return `gc` unchanged."
27 changes: 14 additions & 13 deletions src/controller/nonlinmpc.jl
Original file line number Diff line number Diff line change
@@ -18,7 +18,8 @@ struct NonLinMPC{
JB<:AbstractADType,
PT<:Any,
JEfunc<:Function,
GCfunc<:Function
GCfunc<:Function,
M<:AbstractMatrix{NT}
} <: PredictiveController{NT}
estim::SE
transcription::TM
@@ -39,8 +40,8 @@ struct NonLinMPC{
p::PT
R̂u::Vector{NT}
R̂y::Vector{NT}
P̃Δu::Matrix{NT}
P̃u ::Matrix{NT}
P̃Δu::M
P̃u ::M
Tu ::Matrix{NT}
Tu_lastu0::Vector{NT}
Ẽ::Matrix{NT}
@@ -110,7 +111,7 @@ struct NonLinMPC{
nZ̃ = get_nZ(estim, transcription, Hp, Hc) + nϵ
Z̃ = zeros(NT, nZ̃)
buffer = PredictiveControllerBuffer(estim, transcription, Hp, Hc, nϵ)
mpc = new{NT, SE, TM, JM, GB, HB, JB, PT, JEfunc, GCfunc}(
mpc = new{NT, SE, TM, JM, GB, HB, JB, PT, JEfunc, GCfunc, typeof(P̃u)}(
estim, transcription, optim, con,
gradient, hessian, jacobian,
Z̃, ŷ,
@@ -289,9 +290,9 @@ function NonLinMPC(
Mwt = fill(DEFAULT_MWT, model.ny),
Nwt = fill(DEFAULT_NWT, model.nu),
Lwt = fill(DEFAULT_LWT, model.nu),
M_Hp = diagm(repeat(Mwt, Hp)),
N_Hc = diagm(repeat(Nwt, Hc)),
L_Hp = diagm(repeat(Lwt, Hp)),
M_Hp = Diagonal(repeat(Mwt, Hp)),
N_Hc = Diagonal(repeat(Nwt, Hc)),
L_Hp = Diagonal(repeat(Lwt, Hp)),
Cwt = DEFAULT_CWT,
Ewt = DEFAULT_EWT,
JE ::Function = (_,_,_,_) -> 0.0,
@@ -321,9 +322,9 @@ function NonLinMPC(
Mwt = fill(DEFAULT_MWT, model.ny),
Nwt = fill(DEFAULT_NWT, model.nu),
Lwt = fill(DEFAULT_LWT, model.nu),
M_Hp = diagm(repeat(Mwt, Hp)),
N_Hc = diagm(repeat(Nwt, Hc)),
L_Hp = diagm(repeat(Lwt, Hp)),
M_Hp = Diagonal(repeat(Mwt, Hp)),
N_Hc = Diagonal(repeat(Nwt, Hc)),
L_Hp = Diagonal(repeat(Lwt, Hp)),
Cwt = DEFAULT_CWT,
Ewt = DEFAULT_EWT,
JE ::Function = (_,_,_,_) -> 0.0,
@@ -377,9 +378,9 @@ function NonLinMPC(
Mwt = fill(DEFAULT_MWT, estim.model.ny),
Nwt = fill(DEFAULT_NWT, estim.model.nu),
Lwt = fill(DEFAULT_LWT, estim.model.nu),
M_Hp = diagm(repeat(Mwt, Hp)),
N_Hc = diagm(repeat(Nwt, Hc)),
L_Hp = diagm(repeat(Lwt, Hp)),
M_Hp = Diagonal(repeat(Mwt, Hp)),
N_Hc = Diagonal(repeat(Nwt, Hc)),
L_Hp = Diagonal(repeat(Lwt, Hp)),
Cwt = DEFAULT_CWT,
Ewt = DEFAULT_EWT,
JE ::Function = (_,_,_,_) -> 0.0,
9 changes: 5 additions & 4 deletions src/controller/transcription.jl
Original file line number Diff line number Diff line change
@@ -85,15 +85,15 @@ function init_ZtoΔU end
function init_ZtoΔU(
estim::StateEstimator{NT}, transcription::SingleShooting, _ , Hc
) where {NT<:Real}
PΔu = Matrix{NT}(I, estim.model.nu*Hc, estim.model.nu*Hc)
PΔu = Diagonal(fill(one(NT), estim.model.nu*Hc))
return PΔu
end

function init_ZtoΔU(
estim::StateEstimator{NT}, transcription::MultipleShooting, Hp, Hc
) where {NT<:Real}
I_nu_Hc = Matrix{NT}(I, estim.model.nu*Hc, estim.model.nu*Hc)
PΔu = [I_nu_Hc zeros(NT, estim.model.nu*Hc, estim.nx̂*Hp)]
I_nu_Hc = Diagonal(fill(one(NT), estim.model.nu*Hc))
PΔu = sparse_hcat(I_nu_Hc , spzeros(NT, estim.model.nu*Hc, estim.nx̂*Hp))
return PΔu
end

@@ -145,7 +145,8 @@ function init_ZtoU(
) where {NT<:Real}
model = estim.model
# Pu and Tu are `Matrix{NT}`, conversion is faster than `Matrix{Bool}` or `BitMatrix`
I_nu = Matrix{NT}(I, model.nu, model.nu)
I_nu = Diagonal(fill(one(NT), model.nu))
# TODO: make PU and friends sparse
PU_Hc = LowerTriangular(repeat(I_nu, Hc, Hc))
PUdagger = [PU_Hc; repeat(I_nu, Hp - Hc, Hc)]
Pu = init_PUmat(estim, transcription, Hp, Hc, PUdagger)