AI related projects -- learning progress
-
Books and papers to take a look at:
- Geometric deep learning (Deep mind + Cambridge) and accompanying course (Bronstein et al.)
- Related review and accompanying code
- Deep Learning book - I. Goodfellow et al.
- Machine Learning: A probabilistic perspective - K. Murphy
- Mathematics for Machine Learning - C. S. Ong, A. A. Faisal, M. P. Deisenroth
- Christopher, M. B. (2016). Pattern Recognition and Machine Learning. Springer-Verlag New York.
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, pp. 337-387). New York: Springer series in statistics.
- Statistical physics of data assimilation and machine learning
- Understanding Deep Learning - J.D.Prince
- Geometric deep learning (Deep mind + Cambridge) and accompanying course (Bronstein et al.)
-
Additional paper reading material: