-
-
Notifications
You must be signed in to change notification settings - Fork 29
add : mongodb integration #110
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
vipul-maheshwari
wants to merge
12
commits into
AI-Northstar-Tech:main
Choose a base branch
from
vipul-maheshwari:vipul/mongodb-integration
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
12 commits
Select commit
Hold shift + click to select a range
6788f90
adding mongodb
vipul-maheshwari 104ceb1
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] 69d5ca0
checks
vipul-maheshwari ce19247
Merge branch 'vipul/mongodb-integration' of https://github.com/vipul-…
vipul-maheshwari 28d4505
fixes
vipul-maheshwari 58d6419
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] 9bf53b7
some fixes based on the comments
vipul-maheshwari da26544
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] 4e7f831
export script for mongodb
vipul-maheshwari ad98acc
Merge branch 'main' into vipul/mongodb-integration
vipul-maheshwari a581949
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] 11ca782
added the mongodb readme for users
vipul-maheshwari File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
# MongoDB Import/Export Utility | ||
|
||
This guide provides a comprehensive overview of how to effectively import and export VDF formatted to and from MongoDB collections. | ||
|
||
## Prerequisites | ||
|
||
Ensure you have reviewed the root [README](../README.md) of this repository before proceeding. | ||
|
||
## Command-Line Usage | ||
|
||
### Shared Arguments | ||
|
||
- `<connection_string>`: Your MongoDB Atlas connection string. | ||
- `<database_name>`: The name of your MongoDB database. | ||
- `<collection_name>`: The name of your MongoDB collection. | ||
- `<vector_dimension>`: The dimension of the vector columns to be imported/exported. If not specified, the script will auto-detect the dimension. | ||
|
||
### 1. Exporting Data from MongoDB | ||
|
||
To export data from a MongoDB collection to a VDF (Vector Data Format) dataset: | ||
|
||
```bash | ||
export_vdf mongodb --connection_string <connection_string> --database <database_name> --collection <collection_name> --vector_dim <vector_dimension> | ||
``` | ||
|
||
### 2. Importing Data to MongoDB | ||
|
||
To import data from a VDF dataset into a MongoDB collection: | ||
|
||
```bash | ||
import_vdf -d <vdf_directory> mongodb --connection_string <connection_string> --database <database_name> --collection <collection_name> --vector_dim <vector_dimension> | ||
``` | ||
|
||
**Additional Argument** for Import: | ||
|
||
- `<vdf_directory>`: Path to the VDF dataset directory on your system. | ||
|
||
### Example Usage | ||
|
||
#### Export Example | ||
|
||
To export data from a MongoDB collection called `my_collection` in the database `my_database`, where vectors are of dimension 128: | ||
|
||
```bash | ||
export_vdf mongodb --connection_string "mongodb+srv://<username>:<password>@<cluster_name>.mongodb.net/<database_name>?retryWrites=true&w=majority" --database "my_database" --collection "my_collection" --vector_dim 128 | ||
``` | ||
|
||
#### Import Example | ||
|
||
To import data from a VDF dataset located in `/path/to/vdf/dataset` into the MongoDB collection `sample_collection`: | ||
|
||
```bash | ||
import_vdf -d /path/to/vdf/dataset mongodb --connection_string "mongodb+srv://<username>:<password>@<cluster_name>.mongodb.net/<database_name>?retryWrites=true&w=majority" --database "sample_database" --collection "sample_collection" --vector_dim 128 | ||
``` | ||
|
||
## Key Features | ||
|
||
- **Batch Processing**: Both import and export operations support batching for improved efficiency. | ||
- **Data Type Conversion**: Automatically converts data types to corresponding MongoDB-compatible formats. | ||
- **Auto-detection**: If the `vector_dim` parameter is not specified, the utility will automatically detect the dimension of the vectors. | ||
- **Interactive Mode**: The utility will prompt for any missing arguments if they are not provided via the command line. | ||
|
||
## Additional Notes | ||
|
||
- Always verify that your `<connection_string>` contains the correct username, password, cluster name, and database details. | ||
- Ensure the VDF dataset is properly formatted to match MongoDB's expected data types and structure. | ||
|
||
## Troubleshooting | ||
|
||
- Ensure that your IP address is configured in the **Network Access** section of your MongoDB Atlas dashboard to allow connections to your MongoDB instance. If you encounter difficulties with the connection string format, consult [MongoDB's official documentation](https://www.mongodb.com/docs/atlas/connect-to-cluster/) for detailed guidance. | ||
|
||
- For any issues related to vector dimension mismatches, verify that the vector dimension in the VDF dataset matches the `vector_dim` parameter you provide during import or export operations. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -34,4 +34,5 @@ mlx_embedding_models | |
azure-search-documents | ||
azure-identity | ||
turbopuffer[fast] | ||
psycopg2 | ||
psycopg2 | ||
pymongo |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
import json | ||
import os | ||
from typing import Dict, List | ||
import pymongo | ||
import pandas as pd | ||
from tqdm import tqdm | ||
from vdf_io.meta_types import NamespaceMeta | ||
from vdf_io.names import DBNames | ||
from vdf_io.util import set_arg_from_input | ||
from vdf_io.export_vdf.vdb_export_cls import ExportVDB | ||
from bson import ObjectId, Binary, Regex, Timestamp, Decimal128, Code | ||
import logging | ||
|
||
logging.basicConfig(level=logging.INFO) | ||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class ExportMongoDB(ExportVDB): | ||
DB_NAME_SLUG = DBNames.MONGODB | ||
|
||
@classmethod | ||
def make_parser(cls, subparsers): | ||
parser_mongodb = subparsers.add_parser( | ||
cls.DB_NAME_SLUG, help="Export data from MongoDB" | ||
) | ||
parser_mongodb.add_argument( | ||
"--connection_string", type=str, help="MongoDB Atlas Connection string" | ||
) | ||
parser_mongodb.add_argument( | ||
"--vector_dim", type=int, help="Expected dimension of vector columns" | ||
) | ||
parser_mongodb.add_argument( | ||
"--database", type=str, help="MongoDB Atlas Database name" | ||
) | ||
parser_mongodb.add_argument( | ||
"--collection", type=str, help="MongoDB Atlas collection to export" | ||
) | ||
parser_mongodb.add_argument( | ||
"--batch_size", | ||
type=int, | ||
help="Batch size for exporting data", | ||
default=10_000, | ||
) | ||
|
||
@classmethod | ||
def export_vdb(cls, args): | ||
set_arg_from_input( | ||
args, | ||
"connection_string", | ||
"Enter the MongoDB Atlas connection string: ", | ||
str, | ||
) | ||
set_arg_from_input( | ||
args, | ||
"database", | ||
"Enter the MongoDB Atlas database name: ", | ||
str, | ||
) | ||
set_arg_from_input( | ||
args, | ||
"collection", | ||
"Enter the name of collection to export: ", | ||
str, | ||
) | ||
set_arg_from_input( | ||
args, | ||
"vector_dim", | ||
"Enter the expected dimension of vector columns: ", | ||
int, | ||
) | ||
mongodb_atlas_export = ExportMongoDB(args) | ||
mongodb_atlas_export.all_collections = mongodb_atlas_export.get_index_names() | ||
mongodb_atlas_export.get_data() | ||
return mongodb_atlas_export | ||
|
||
def __init__(self, args): | ||
super().__init__(args) | ||
try: | ||
self.client = pymongo.MongoClient( | ||
args["connection_string"], serverSelectionTimeoutMS=5000 | ||
) | ||
self.client.server_info() | ||
logger.info("Successfully connected to MongoDB") | ||
except pymongo.errors.ServerSelectionTimeoutError as err: | ||
logger.error(f"Failed to connect to MongoDB: {err}") | ||
raise | ||
|
||
try: | ||
self.db = self.client[args["database"]] | ||
except Exception as err: | ||
logger.error(f"Failed to select MongoDB database: {err}") | ||
raise | ||
|
||
try: | ||
self.collection = self.db[args["collection"]] | ||
except Exception as err: | ||
logger.error(f"Failed to select MongoDB collection: {err}") | ||
raise | ||
|
||
def get_index_names(self): | ||
collection_name = self.args.get("collection", None) | ||
if collection_name is not None: | ||
if collection_name not in self.db.list_collection_names(): | ||
logger.error( | ||
f"Collection '{collection_name}' does not exist in the database." | ||
) | ||
raise ValueError( | ||
f"Collection '{collection_name}' does not exist in the database." | ||
) | ||
return [collection_name] | ||
else: | ||
return self.get_all_index_names() | ||
|
||
def get_all_index_names(self): | ||
return self.db.list_collection_names() | ||
|
||
def flatten_dict(self, d, parent_key="", sep="#SEP#"): | ||
items = [] | ||
type_conversions = { | ||
ObjectId: lambda v: f"BSON_ObjectId_{str(v)}", | ||
Binary: lambda v: f"BSON_Binary_{v.decode('utf-8', errors='ignore')}", | ||
Regex: lambda v: f"BSON_Regex_{json.dumps({'pattern': v.pattern, 'options': v.options})}", | ||
Timestamp: lambda v: f"BSON_Timestamp_{v.as_datetime().isoformat()}", | ||
Decimal128: lambda v: f"BSON_Decimal128_{float(v.to_decimal())}", | ||
Code: lambda v: f"BSON_Code_{str(v.code)}", | ||
} | ||
|
||
for key, value in d.items(): | ||
new_key = f"{parent_key}{sep}{key}" if parent_key else key | ||
conversion = type_conversions.get(type(value)) | ||
|
||
if conversion: | ||
items.append((new_key, conversion(value))) | ||
elif isinstance(value, dict): | ||
items.extend(self.flatten_dict(value, new_key, sep=sep).items()) | ||
elif isinstance(value, list): | ||
if all(isinstance(v, dict) and "$numberDouble" in v for v in value): | ||
float_list = [float(v["$numberDouble"]) for v in value] | ||
items.append((new_key, float_list)) | ||
else: | ||
items.append((new_key, value)) | ||
else: | ||
vipul-maheshwari marked this conversation as resolved.
Show resolved
Hide resolved
|
||
items.append((new_key, value)) | ||
|
||
return dict(items) | ||
|
||
def get_data(self): | ||
object_columns_list = [] | ||
vector_columns = [] | ||
expected_dim = self.args.get("vector_dim") | ||
collection_name = self.args["collection"] | ||
batch_size = self.args["batch_size"] | ||
|
||
vectors_directory = self.create_vec_dir(collection_name) | ||
|
||
total_documents = self.collection.count_documents({}) | ||
total_batches = (total_documents + batch_size - 1) // batch_size | ||
total = 0 | ||
index_metas: Dict[str, List[NamespaceMeta]] = {} | ||
|
||
if expected_dim is None: | ||
logger.info("Vector dimension not provided. Detecting from data...") | ||
sample_doc = self.collection.find_one() | ||
if sample_doc: | ||
flat_doc = self.flatten_dict(sample_doc) | ||
for key, value in flat_doc.items(): | ||
if isinstance(value, list) and all( | ||
isinstance(x, (int, float)) for x in value | ||
): | ||
expected_dim = len(value) | ||
logger.info( | ||
f"Detected vector dimension: {expected_dim} from column: {key}" | ||
) | ||
break | ||
|
||
if expected_dim is None: | ||
expected_dim = 0 | ||
logger.warning("No vector columns detected in the data") | ||
|
||
for i in tqdm(range(total_batches), desc=f"Exporting {collection_name}"): | ||
cursor = self.collection.find().skip(i * batch_size).limit(batch_size) | ||
batch_data = list(cursor) | ||
if not batch_data: | ||
break | ||
|
||
flattened_data = [] | ||
for document in batch_data: | ||
flat_doc = self.flatten_dict(document) | ||
|
||
for key in flat_doc: | ||
if isinstance(flat_doc[key], dict): | ||
flat_doc[key] = json.dumps(flat_doc[key]) | ||
elif flat_doc[key] == "": | ||
flat_doc[key] = None | ||
|
||
flattened_data.append(flat_doc) | ||
|
||
df = pd.DataFrame(flattened_data) | ||
df = df.dropna(axis=1, how="all") | ||
vipul-maheshwari marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
vipul-maheshwari marked this conversation as resolved.
Show resolved
Hide resolved
|
||
for column in df.columns: | ||
if ( | ||
isinstance(df[column].iloc[0], list) | ||
and len(df[column].iloc[0]) == expected_dim | ||
): | ||
vector_columns.append(column) | ||
else: | ||
object_columns_list.append(column) | ||
df[column] = df[column].astype(str) | ||
|
||
parquet_file = os.path.join(vectors_directory, f"{i}.parquet") | ||
df.to_parquet(parquet_file) | ||
total += len(df) | ||
|
||
namespace_metas = [ | ||
self.get_namespace_meta( | ||
collection_name, | ||
vectors_directory, | ||
total=total, | ||
num_vectors_exported=total, | ||
dim=expected_dim, | ||
vector_columns=vector_columns, | ||
vipul-maheshwari marked this conversation as resolved.
Show resolved
Hide resolved
vipul-maheshwari marked this conversation as resolved.
Show resolved
Hide resolved
|
||
distance="cosine", | ||
) | ||
] | ||
index_metas[collection_name] = namespace_metas | ||
|
||
self.file_structure.append(os.path.join(self.vdf_directory, "VDF_META.json")) | ||
internal_metadata = self.get_basic_vdf_meta(index_metas) | ||
meta_text = json.dumps(internal_metadata.model_dump(), indent=4) | ||
tqdm.write(meta_text) | ||
with open(os.path.join(self.vdf_directory, "VDF_META.json"), "w") as json_file: | ||
json_file.write(meta_text) | ||
|
||
logger.info(f"Export completed. Total documents exported: {total}") | ||
return True |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.