Skip to content

[Usage]: Get request total time #29679

@chwundermsft

Description

@chwundermsft

Your current environment

==============================
        System Info
==============================
OS                           : Ubuntu 22.04.5 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version                : Could not collect
CMake version                : version 3.28.0
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.9.0+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.10.19 | packaged by conda-forge | (main, Oct 22 2025, 22:29:10) [GCC 14.3.0] (64-bit runtime)
Python platform              : Linux-6.8.0-1030-azure-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : Could not collect
CUDA_MODULE_LOADING set to   : 
GPU models and configuration : GPU 0: NVIDIA H100 NVL
Nvidia driver version        : 535.247.01
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.10.2
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               40
On-line CPU(s) list:                  0-39
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 9V84 96-Core Processor
CPU family:                           25
Model:                                17
Thread(s) per core:                   1
Core(s) per socket:                   40
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             4800.05
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves user_shstk avx512_bf16 clzero xsaveerptr rdpru arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            1.3 MiB (40 instances)
L1i cache:                            1.3 MiB (40 instances)
L2 cache:                             40 MiB (40 instances)
L3 cache:                             160 MiB (5 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-39
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.5.2
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.16.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.3.0
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.5
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pyzmq==27.1.0
[pip3] torch==2.9.0
[pip3] torchaudio==2.9.0
[pip3] torchvision==0.24.0
[pip3] transformers==4.57.2
[pip3] triton==3.5.0
[conda] flashinfer-python                    0.5.2            pypi_0                pypi
[conda] numpy                                1.26.4           pypi_0                pypi
[conda] nvidia-cublas-cu12                   12.8.4.1         pypi_0                pypi
[conda] nvidia-cuda-cupti-cu12               12.8.90          pypi_0                pypi
[conda] nvidia-cuda-nvrtc-cu12               12.8.93          pypi_0                pypi
[conda] nvidia-cuda-runtime-cu12             12.8.90          pypi_0                pypi
[conda] nvidia-cudnn-cu12                    9.10.2.21        pypi_0                pypi
[conda] nvidia-cudnn-frontend                1.16.0           pypi_0                pypi
[conda] nvidia-cufft-cu12                    11.3.3.83        pypi_0                pypi
[conda] nvidia-cufile-cu12                   1.13.1.3         pypi_0                pypi
[conda] nvidia-curand-cu12                   10.3.9.90        pypi_0                pypi
[conda] nvidia-cusolver-cu12                 11.7.3.90        pypi_0                pypi
[conda] nvidia-cusparse-cu12                 12.5.8.93        pypi_0                pypi
[conda] nvidia-cusparselt-cu12               0.7.1            pypi_0                pypi
[conda] nvidia-cutlass-dsl                   4.3.0            pypi_0                pypi
[conda] nvidia-ml-py                         13.580.82        pypi_0                pypi
[conda] nvidia-nccl-cu12                     2.27.5           pypi_0                pypi
[conda] nvidia-nvjitlink-cu12                12.8.93          pypi_0                pypi
[conda] nvidia-nvshmem-cu12                  3.3.20           pypi_0                pypi
[conda] nvidia-nvtx-cu12                     12.8.90          pypi_0                pypi
[conda] pyzmq                                27.1.0           pypi_0                pypi
[conda] torch                                2.9.0            pypi_0                pypi
[conda] torchaudio                           2.9.0            pypi_0                pypi
[conda] torchvision                          0.24.0           pypi_0                pypi
[conda] transformers                         4.57.2           pypi_0                pypi
[conda] triton                               3.5.0            pypi_0                pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.11.2
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-39    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
MKL_THREADING_LAYER=GNU
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1

How would you like to use vllm

I run a batch for inference. For each request, I would like to know the total time of the inference for just this one request to get a feeling for the inference time. But I just have those metrices available:

I´m doing a standard offline inference with the generate() method!

Image

Which of them is actually telling how long the overall request for this row in the batch took? Last token ts - first token ts will tell you how long it took to generate this e.g. 12 tokens. The first token latency is time to first token. This is also clear, but I would like to know what is the total time.

And furthermore can you please clarify what units those 23277.812144297 values are. is it ms? is it epoch? is it ns?

Thanks

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    usageHow to use vllm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions