Skip to content

[Bug]: speculative decoding not implemented error #21797

@liana313

Description

@liana313

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 20.04.6 LTS (x86_64)
GCC version                  : (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version                : Could not collect
CMake version                : version 3.16.3
Libc version                 : glibc-2.31

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.1+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.9 | packaged by Anaconda, Inc. | (main, Feb  6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform              : Linux-5.4.0-163-generic-x86_64-with-glibc2.31

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : Could not collect
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version        : 535.54.03
cuDNN version                : Probably one of the following:
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.2
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      48 bits physical, 48 bits virtual
CPU(s):                             128
On-line CPU(s) list:                0-127
Thread(s) per core:                 2
Core(s) per socket:                 32
Socket(s):                          2
NUMA node(s):                       2
Vendor ID:                          AuthenticAMD
CPU family:                         25
Model:                              1
Model name:                         AMD EPYC 7543 32-Core Processor
Stepping:                           1
Frequency boost:                    enabled
CPU MHz:                            1499.823
CPU max MHz:                        2800.0000
CPU min MHz:                        1500.0000
BogoMIPS:                           5600.18
Virtualization:                     AMD-V
L1d cache:                          2 MiB
L1i cache:                          2 MiB
L2 cache:                           32 MiB
L3 cache:                           512 MiB
NUMA node0 CPU(s):                  0-31,64-95
NUMA node1 CPU(s):                  32-63,96-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca

==============================
Versions of relevant libraries
==============================
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.2.1
[pip3] torch==2.7.1
[pip3] torchaudio==2.7.1
[pip3] torchvision==0.22.1
[pip3] transformers==4.54.0
[pip3] triton==3.3.1
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-cufile-cu12        1.11.1.6                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pyzmq                     26.2.1                   pypi_0    pypi
[conda] torch                     2.7.1                    pypi_0    pypi
[conda] torchaudio                2.7.1                    pypi_0    pypi
[conda] torchvision               0.22.1                   pypi_0    pypi
[conda] transformers              4.54.0                   pypi_0    pypi
[conda] triton                    3.3.1                    pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.10.0
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
  	�[4mGPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	NV12	NV12	NV12	NV12	NV12	NV12	NV12	0-31,64-95	0		N/A
GPU1	NV12	 X 	NV12	NV12	NV12	NV12	NV12	NV12	0-31,64-95	0		N/A
GPU2	NV12	NV12	 X 	NV12	NV12	NV12	NV12	NV12	0-31,64-95	0		N/A
GPU3	NV12	NV12	NV12	 X 	NV12	NV12	NV12	NV12	0-31,64-95	0		N/A
GPU4	NV12	NV12	NV12	NV12	 X 	NV12	NV12	NV12	32-63,96-127	1		N/A
GPU5	NV12	NV12	NV12	NV12	NV12	 X 	NV12	NV12	32-63,96-127	1		N/A
GPU6	NV12	NV12	NV12	NV12	NV12	NV12	 X 	NV12	32-63,96-127	1		N/A
GPU7	NV12	NV12	NV12	NV12	NV12	NV12	NV12	 X 	32-63,96-127	1		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
CUDA_HOME=/usr/local/cuda-12.1
CUDA_HOME=/usr/local/cuda-12.1
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY


🐛 Describe the bug

Following the speculative decoding example provided in the docs, I run into a NotImplemented error.

Code to reproduce:

python -m vllm.entrypoints.openai.api_server \
    --host 0.0.0.0 \
    --port 8000 \
    --download-dir $home_path \
    --model facebook/opt-6.7b \
    --seed 42 \
    -tp 1 \
    --gpu_memory_utilization 0.8 \
    --speculative_config '{"model": "facebook/opt-125m", "num_speculative_tokens": 5}'

Error:
raise NotImplementedError( NotImplementedError: Speculative decoding with draft model is not supported yet. Please consider using other speculative decoding methods such as ngram, medusa, eagle, or deepseek_mtp.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions