diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/README.md b/lib/node_modules/@stdlib/stats/base/snanvariancepn/README.md
index eb6a46aed57a..171e5820b7f9 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/README.md
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/README.md
@@ -98,9 +98,9 @@ The use of the term `n-1` is commonly referred to as Bessel's correction. Note,
 var snanvariancepn = require( '@stdlib/stats/base/snanvariancepn' );
 ```
 
-#### snanvariancepn( N, correction, x, stride )
+#### snanvariancepn( N, correction, x, strideX )
 
-Computes the [variance][variance] of a single-precision floating-point strided array `x` ignoring `NaN` values and using a two-pass algorithm.
+Computes the [variance][variance] of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
 
 ```javascript
 var Float32Array = require( '@stdlib/array/float32' );
@@ -116,39 +116,36 @@ The function has the following parameters:
 -   **N**: number of indexed elements.
 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
 -   **x**: input [`Float32Array`][@stdlib/array/float32].
--   **stride**: index increment for `x`.
+-   **strideX**: stride length for `x`.
 
-The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
+The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
+
+<!-- eslint-disable max-len -->
 
 ```javascript
 var Float32Array = require( '@stdlib/array/float32' );
-var floor = require( '@stdlib/math/base/special/floor' );
 
-var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
-var N = floor( x.length / 2 );
+var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ] );
 
-var v = snanvariancepn( N, 1, x, 2 );
+var v = snanvariancepn( 5, 1, x, 2 );
 // returns 6.25
 ```
 
 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
 
-<!-- eslint-disable stdlib/capitalized-comments -->
+<!-- eslint-disable stdlib/capitalized-comments, max-len -->
 
 ```javascript
 var Float32Array = require( '@stdlib/array/float32' );
-var floor = require( '@stdlib/math/base/special/floor' );
 
-var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
+var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
 var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
 
-var N = floor( x0.length / 2 );
-
-var v = snanvariancepn( N, 1, x1, 2 );
+var v = snanvariancepn( 5, 1, x1, 2 );
 // returns 6.25
 ```
 
-#### snanvariancepn.ndarray( N, correction, x, stride, offset )
+#### snanvariancepn.ndarray( N, correction, x, strideX, offsetX )
 
 Computes the [variance][variance] of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.
 
@@ -163,18 +160,18 @@ var v = snanvariancepn.ndarray( x.length, 1, x, 1, 0 );
 
 The function has the following additional parameters:
 
--   **offset**: starting index for `x`.
+-   **offsetX**: starting index for `x`.
+
+While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other element in `x` starting from the second element
 
-While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
+<!-- eslint-disable max-len -->
 
 ```javascript
 var Float32Array = require( '@stdlib/array/float32' );
-var floor = require( '@stdlib/math/base/special/floor' );
 
-var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
-var N = floor( x.length / 2 );
+var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
 
-var v = snanvariancepn.ndarray( N, 1, x, 2, 1 );
+var v = snanvariancepn.ndarray( 5, 1, x, 2, 1 );
 // returns 6.25
 ```
 
@@ -200,18 +197,19 @@ var v = snanvariancepn.ndarray( N, 1, x, 2, 1 );
 <!-- eslint no-undef: "error" -->
 
 ```javascript
-var randu = require( '@stdlib/random/base/randu' );
-var round = require( '@stdlib/math/base/special/round' );
-var Float32Array = require( '@stdlib/array/float32' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
 var snanvariancepn = require( '@stdlib/stats/base/snanvariancepn' );
 
-var x;
-var i;
-
-x = new Float32Array( 10 );
-for ( i = 0; i < x.length; i++ ) {
-    x[ i ] = round( (randu()*100.0) - 50.0 );
+function rand() {
+    if ( bernoulli( 0.8 ) < 1 ) {
+        return NaN;
+    }
+    return uniform( -50.0, 50.0 );
 }
+
+var x = filledarrayBy( 10, 'float32', rand );
 console.log( x );
 
 var v = snanvariancepn( x.length, 1, x, 1 );
@@ -222,6 +220,125 @@ console.log( v );
 
 <!-- /.examples -->
 
+<!-- C interface documentation. -->
+
+* * *
+
+<section class="c">
+
+## C APIs
+
+<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->
+
+<section class="intro">
+
+</section>
+
+<!-- /.intro -->
+
+<!-- C usage documentation. -->
+
+<section class="usage">
+
+### Usage
+
+```c
+#include "stdlib/stats/base/snanvariancepn.h"
+```
+
+#### stdlib_strided_snanvariancepn( N, correction, \*X, strideX )
+
+Computes the [variance][variance] of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
+
+```c
+const float x[] = { 1.0f, -2.0f, 0.0f/0.0f, 2.0f };
+
+float v = stdlib_strided_snanvariancepn( 4, 1.0f, x, 1 );
+// returns ~4.3333f
+```
+
+The function accepts the following arguments:
+
+-   **N**: `[in] CBLAS_INT` number of indexed elements.
+-   **correction**: `[in] float` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
+-   **X**: `[in] float*` input array.
+-   **strideX**: `[in] CBLAS_INT` stride length for `X`.
+
+```c
+float stdlib_strided_snanvariancepn( const CBLAS_INT N, const float correction, const float *X, const CBLAS_INT strideX );
+```
+
+#### stdlib_strided_snanvariancepn_ndarray( N, correction, \*X, strideX, offsetX )
+
+Computes the [variance][variance] of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.
+
+```c
+const float x[] = { 1.0f, -2.0f, 0.0f/0.0f, 2.0f };
+
+float v = stdlib_strided_snanvariancepn_ndarray( 4, 1.0f, x, 1, 0 );
+// returns ~4.3333f
+```
+
+The function accepts the following arguments:
+
+-   **N**: `[in] CBLAS_INT` number of indexed elements.
+-   **correction**: `[in] float` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
+-   **X**: `[in] float*` input array.
+-   **strideX**: `[in] CBLAS_INT` stride length for `X`.
+-   **offsetX**: `[in] CBLAS_INT` starting index for `X`.
+
+```c
+float stdlib_strided_snanvariancepn_ndarray( const CBLAS_INT N, const float correction, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
+```
+
+</section>
+
+<!-- /.usage -->
+
+<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
+
+<section class="notes">
+
+</section>
+
+<!-- /.notes -->
+
+<!-- C API usage examples. -->
+
+<section class="examples">
+
+### Examples
+
+```c
+#include "stdlib/stats/base/snanvariancepn.h"
+#include <stdio.h>
+
+int main( void ) {
+    // Create a strided array:
+    const float x[] = { 1.0f, 2.0f, 0.0f/0.0f, 3.0f, 0.0f/0.0f, 4.0f, 5.0f, 6.0f, 0.0f/0.0f, 7.0f, 8.0f, 0.0f/0.0f };
+
+    // Specify the number of elements:
+    const int N = 6;
+
+    // Specify the stride length:
+    const int strideX = 2;
+
+    // Compute the variance:
+    float v = stdlib_strided_snanvariancepn( N, 1.0f, x, strideX );
+
+    // Print the result:
+    printf( "sample variance: %f\n", v );
+}
+```
+
+</section>
+
+<!-- /.examples -->
+
+</section>
+
+<!-- /.c -->
+
 * * *
 
 <section class="references">
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.js
index 836a588556c5..9f2122f34287 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.js
@@ -21,16 +21,30 @@
 // MODULES //
 
 var bench = require( '@stdlib/bench' );
-var randu = require( '@stdlib/random/base/randu' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
 var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
 var pow = require( '@stdlib/math/base/special/pow' );
-var Float32Array = require( '@stdlib/array/float32' );
 var pkg = require( './../package.json' ).name;
 var snanvariancepn = require( './../lib/snanvariancepn.js' );
 
 
 // FUNCTIONS //
 
+/**
+* Returns a random value or `NaN`.
+*
+* @private
+* @returns {number} random number or `NaN`
+*/
+function rand() {
+	if ( bernoulli( 0.8 ) < 1 ) {
+		return NaN;
+	}
+	return uniform( -10.0, 10.0 );
+}
+
 /**
 * Creates a benchmark function.
 *
@@ -39,17 +53,7 @@ var snanvariancepn = require( './../lib/snanvariancepn.js' );
 * @returns {Function} benchmark function
 */
 function createBenchmark( len ) {
-	var x;
-	var i;
-
-	x = new Float32Array( len );
-	for ( i = 0; i < x.length; i++ ) {
-		if ( randu() < 0.2 ) {
-			x[ i ] = NaN;
-		} else {
-			x[ i ] = ( randu()*20.0 ) - 10.0;
-		}
-	}
+	var x = filledarrayBy( len, 'float32', rand );
 	return benchmark;
 
 	function benchmark( b ) {
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.native.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.native.js
index 03c1f751db0b..8f7fa8621f6c 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.native.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.native.js
@@ -22,10 +22,11 @@
 
 var resolve = require( 'path' ).resolve;
 var bench = require( '@stdlib/bench' );
-var randu = require( '@stdlib/random/base/randu' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
 var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
 var pow = require( '@stdlib/math/base/special/pow' );
-var Float32Array = require( '@stdlib/array/float32' );
 var tryRequire = require( '@stdlib/utils/try-require' );
 var pkg = require( './../package.json' ).name;
 
@@ -40,6 +41,19 @@ var opts = {
 
 // FUNCTIONS //
 
+/**
+* Returns a random value or `NaN`.
+*
+* @private
+* @returns {number} random number or `NaN`
+*/
+function rand() {
+	if ( bernoulli( 0.8 ) < 1 ) {
+		return NaN;
+	}
+	return uniform( -10.0, 10.0 );
+}
+
 /**
 * Creates a benchmark function.
 *
@@ -48,17 +62,7 @@ var opts = {
 * @returns {Function} benchmark function
 */
 function createBenchmark( len ) {
-	var x;
-	var i;
-
-	x = new Float32Array( len );
-	for ( i = 0; i < x.length; i++ ) {
-		if ( randu() < 0.2 ) {
-			x[ i ] = NaN;
-		} else {
-			x[ i ] = ( randu()*20.0 ) - 10.0;
-		}
-	}
+	var x = filledarrayBy( len, 'float32', rand );
 	return benchmark;
 
 	function benchmark( b ) {
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.ndarray.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.ndarray.js
index a42e8965bde5..2e2d6644ff88 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.ndarray.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.ndarray.js
@@ -21,16 +21,30 @@
 // MODULES //
 
 var bench = require( '@stdlib/bench' );
-var randu = require( '@stdlib/random/base/randu' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
 var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
 var pow = require( '@stdlib/math/base/special/pow' );
-var Float32Array = require( '@stdlib/array/float32' );
 var pkg = require( './../package.json' ).name;
 var snanvariancepn = require( './../lib/ndarray.js' );
 
 
 // FUNCTIONS //
 
+/**
+* Returns a random value or `NaN`.
+*
+* @private
+* @returns {number} random number or `NaN`
+*/
+function rand() {
+	if ( bernoulli( 0.8 ) < 1 ) {
+		return NaN;
+	}
+	return uniform( -10.0, 10.0 );
+}
+
 /**
 * Creates a benchmark function.
 *
@@ -39,17 +53,7 @@ var snanvariancepn = require( './../lib/ndarray.js' );
 * @returns {Function} benchmark function
 */
 function createBenchmark( len ) {
-	var x;
-	var i;
-
-	x = new Float32Array( len );
-	for ( i = 0; i < x.length; i++ ) {
-		if ( randu() < 0.2 ) {
-			x[ i ] = NaN;
-		} else {
-			x[ i ] = ( randu()*20.0 ) - 10.0;
-		}
-	}
+	var x = filledarrayBy( len, 'float32', rand );
 	return benchmark;
 
 	function benchmark( b ) {
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.ndarray.native.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.ndarray.native.js
index 2e5e254b1cdc..56ce8a4f843b 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.ndarray.native.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/benchmark.ndarray.native.js
@@ -22,10 +22,11 @@
 
 var resolve = require( 'path' ).resolve;
 var bench = require( '@stdlib/bench' );
-var randu = require( '@stdlib/random/base/randu' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
 var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
 var pow = require( '@stdlib/math/base/special/pow' );
-var Float32Array = require( '@stdlib/array/float32' );
 var tryRequire = require( '@stdlib/utils/try-require' );
 var pkg = require( './../package.json' ).name;
 
@@ -40,6 +41,19 @@ var opts = {
 
 // FUNCTIONS //
 
+/**
+* Returns a random value or `NaN`.
+*
+* @private
+* @returns {number} random number or `NaN`
+*/
+function rand() {
+	if ( bernoulli( 0.8 ) < 1 ) {
+		return NaN;
+	}
+	return uniform( -10.0, 10.0 );
+}
+
 /**
 * Creates a benchmark function.
 *
@@ -48,17 +62,7 @@ var opts = {
 * @returns {Function} benchmark function
 */
 function createBenchmark( len ) {
-	var x;
-	var i;
-
-	x = new Float32Array( len );
-	for ( i = 0; i < x.length; i++ ) {
-		if ( randu() < 0.2 ) {
-			x[ i ] = NaN;
-		} else {
-			x[ i ] = ( randu()*20.0 ) - 10.0;
-		}
-	}
+	var x = filledarrayBy( len, 'float32', rand );
 	return benchmark;
 
 	function benchmark( b ) {
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/c/benchmark.length.c b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/c/benchmark.length.c
index de403cac8195..445fa95b5fda 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/c/benchmark.length.c
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/benchmark/c/benchmark.length.c
@@ -94,7 +94,7 @@ static float rand_float( void ) {
 * @param len          array length
 * @return             elapsed time in seconds
 */
-static double benchmark( int iterations, int len ) {
+static double benchmark1( int iterations, int len ) {
 	double elapsed;
 	float x[ len ];
 	float v;
@@ -102,11 +102,16 @@ static double benchmark( int iterations, int len ) {
 	int i;
 
 	for ( i = 0; i < len; i++ ) {
-		x[ i ] = ( rand_float() * 20000.0f ) - 10000.0f;
+		if ( rand_float() < 0.2 ) {
+			x[ i ] = 0.0f / 0.0f; // NaN
+		} else {
+			x[ i ] = ( rand_float() * 20000.0f ) - 10000.0f;
+		}
 	}
 	v = 0.0f;
 	t = tic();
 	for ( i = 0; i < iterations; i++ ) {
+		// cppcheck-suppress uninitvar
 		v = stdlib_strided_snanvariancepn( len, 1.0f, x, 1 );
 		if ( v != v ) {
 			printf( "should not return NaN\n" );
@@ -120,6 +125,44 @@ static double benchmark( int iterations, int len ) {
 	return elapsed;
 }
 
+/**
+* Runs a benchmark.
+*
+* @param iterations   number of iterations
+* @param len          array length
+* @return             elapsed time in seconds
+*/
+static double benchmark2( int iterations, int len ) {
+	double elapsed;
+	float x[ len ];
+	float v;
+	double t;
+	int i;
+
+	for ( i = 0; i < len; i++ ) {
+		if ( rand_float() < 0.2 ) {
+			x[ i ] = 0.0f / 0.0f; // NaN
+		} else {
+			x[ i ] = ( rand_float() * 20000.0f ) - 10000.0f;
+		}
+	}
+	v = 0.0f;
+	t = tic();
+	for ( i = 0; i < iterations; i++ ) {
+		// cppcheck-suppress uninitvar
+		v = stdlib_strided_snanvariancepn_ndarray( len, 1.0f, x, 1, 0 );
+		if ( v != v ) {
+			printf( "should not return NaN\n" );
+			break;
+		}
+	}
+	elapsed = tic() - t;
+	if ( v != v ) {
+		printf( "should not return NaN\n" );
+	}
+	return elapsed;
+}
+
 /**
 * Main execution sequence.
 */
@@ -142,7 +185,18 @@ int main( void ) {
 		for ( j = 0; j < REPEATS; j++ ) {
 			count += 1;
 			printf( "# c::%s:len=%d\n", NAME, len );
-			elapsed = benchmark( iter, len );
+			elapsed = benchmark1( iter, len );
+			print_results( iter, elapsed );
+			printf( "ok %d benchmark finished\n", count );
+		}
+	}
+	for ( i = MIN; i <= MAX; i++ ) {
+		len = pow( 10, i );
+		iter = ITERATIONS / pow( 10, i-1 );
+		for ( j = 0; j < REPEATS; j++ ) {
+			count += 1;
+			printf( "# c::%s:ndarray:len=%d\n", NAME, len );
+			elapsed = benchmark2( iter, len );
 			print_results( iter, elapsed );
 			printf( "ok %d benchmark finished\n", count );
 		}
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/repl.txt b/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/repl.txt
index 28f293820f68..60bae8809e43 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/repl.txt
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/repl.txt
@@ -1,10 +1,10 @@
 
-{{alias}}( N, correction, x, stride )
+{{alias}}( N, correction, x, strideX )
     Computes the variance of a single-precision floating-point strided array
     ignoring `NaN` values and using a two-pass algorithm.
 
-    The `N` and `stride` parameters determine which elements in `x` are accessed
-    at runtime.
+    The `N` and stride parameters determine which elements in the strided array
+    are accessed at runtime.
 
     Indexing is relative to the first index. To introduce an offset, use a typed
     array view.
@@ -34,8 +34,8 @@
     x: Float32Array
         Input array.
 
-    stride: integer
-        Index increment.
+    strideX: integer
+        Stride length.
 
     Returns
     -------
@@ -49,20 +49,19 @@
     > {{alias}}( x.length, 1, x, 1 )
     ~4.3333
 
-    // Using `N` and `stride` parameters:
-    > x = new {{alias:@stdlib/array/float32}}( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );
-    > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
-    > {{alias}}( N, 1, x, 2 )
+    // Using `N` and stride parameters:
+    > x = new {{alias:@stdlib/array/float32}}( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0, NaN, NaN ] );
+    > {{alias}}( 4, 1, x, 2 )
     ~4.3333
 
     // Using view offsets:
-    > var x0 = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
+    > var x0 = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );
     > var x1 = new {{alias:@stdlib/array/float32}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
-    > N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
-    > {{alias}}( N, 1, x1, 2 )
+    > {{alias}}( 4, 1, x1, 2 )
     ~4.3333
 
-{{alias}}.ndarray( N, correction, x, stride, offset )
+
+{{alias}}.ndarray( N, correction, x, strideX, offsetX )
     Computes the variance of a single-precision floating-point strided array
     ignoring `NaN` values and using a two-pass algorithm and alternative
     indexing semantics.
@@ -92,10 +91,10 @@
     x: Float32Array
         Input array.
 
-    stride: integer
-        Index increment.
+    strideX: integer
+        Stride length.
 
-    offset: integer
+    offsetX: integer
         Starting index.
 
     Returns
@@ -111,9 +110,8 @@
     ~4.3333
 
     // Using offset parameter:
-    > var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
-    > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
-    > {{alias}}.ndarray( N, 1, x, 2, 1 )
+    > var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );
+    > {{alias}}.ndarray( 4, 1, x, 2, 1 )
     ~4.3333
 
     See Also
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/types/index.d.ts b/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/types/index.d.ts
index 2828ff3b1201..43bea31e3c51 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/types/index.d.ts
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/types/index.d.ts
@@ -28,7 +28,7 @@ interface Routine {
 	* @param N - number of indexed elements
 	* @param correction - degrees of freedom adjustment
 	* @param x - input array
-	* @param stride - stride length
+	* @param strideX - stride length
 	* @returns variance
 	*
 	* @example
@@ -39,7 +39,7 @@ interface Routine {
 	* var v = snanvariancepn( x.length, 1, x, 1 );
 	* // returns ~4.3333
 	*/
-	( N: number, correction: number, x: Float32Array, stride: number ): number;
+	( N: number, correction: number, x: Float32Array, strideX: number ): number;
 
 	/**
 	* Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.
@@ -47,8 +47,8 @@ interface Routine {
 	* @param N - number of indexed elements
 	* @param correction - degrees of freedom adjustment
 	* @param x - input array
-	* @param stride - stride length
-	* @param offset - starting index
+	* @param strideX - stride length
+	* @param offsetX - starting index
 	* @returns variance
 	*
 	* @example
@@ -59,7 +59,7 @@ interface Routine {
 	* var v = snanvariancepn.ndarray( x.length, 1, x, 1, 0 );
 	* // returns ~4.3333
 	*/
-	ndarray( N: number, correction: number, x: Float32Array, stride: number, offset: number ): number;
+	ndarray( N: number, correction: number, x: Float32Array, strideX: number, offsetX: number ): number;
 }
 
 /**
@@ -68,7 +68,7 @@ interface Routine {
 * @param N - number of indexed elements
 * @param correction - degrees of freedom adjustment
 * @param x - input array
-* @param stride - stride length
+* @param strideX - stride length
 * @returns variance
 *
 * @example
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/examples/c/example.c b/lib/node_modules/@stdlib/stats/base/snanvariancepn/examples/c/example.c
index 16fbdd6601d8..1aaf4a3635a0 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/examples/c/example.c
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/examples/c/example.c
@@ -17,21 +17,20 @@
 */
 
 #include "stdlib/stats/base/snanvariancepn.h"
-#include <stdint.h>
 #include <stdio.h>
 
 int main( void ) {
 	// Create a strided array:
-	float x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
+	const float x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
 
 	// Specify the number of elements:
-	int64_t N = 6;
+	const int N = 6;
 
 	// Specify the stride length:
-	int64_t stride = 2;
+	const int strideX = 2;
 
 	// Compute the variance:
-	float v = stdlib_strided_snanvariancepn( N, 1.0f, x, stride );
+	float v = stdlib_strided_snanvariancepn( N, 1.0f, x, strideX );
 
 	// Print the result:
 	printf( "sample variance: %f\n", v );
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/examples/index.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/examples/index.js
index 94f2cd4343a0..5de2baf9dd0f 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/examples/index.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/examples/index.js
@@ -18,22 +18,19 @@
 
 'use strict';
 
-var randu = require( '@stdlib/random/base/randu' );
-var round = require( '@stdlib/math/base/special/round' );
-var Float32Array = require( '@stdlib/array/float32' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
 var snanvariancepn = require( './../lib' );
 
-var x;
-var i;
-
-x = new Float32Array( 10 );
-for ( i = 0; i < x.length; i++ ) {
-	if ( randu() < 0.2 ) {
-		x[ i ] = NaN;
-	} else {
-		x[ i ] = round( (randu()*100.0) - 50.0 );
+function rand() {
+	if ( bernoulli( 0.8 ) < 1 ) {
+		return NaN;
 	}
+	return uniform( -50.0, 50.0 );
 }
+
+var x = filledarrayBy( 10, 'float32', rand );
 console.log( x );
 
 var v = snanvariancepn( x.length, 1, x, 1 );
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/include/stdlib/stats/base/snanvariancepn.h b/lib/node_modules/@stdlib/stats/base/snanvariancepn/include/stdlib/stats/base/snanvariancepn.h
index 3b068f12175c..e2faea345c0c 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/include/stdlib/stats/base/snanvariancepn.h
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/include/stdlib/stats/base/snanvariancepn.h
@@ -19,7 +19,7 @@
 #ifndef STDLIB_STATS_BASE_SNANVARIANCEPN_H
 #define STDLIB_STATS_BASE_SNANVARIANCEPN_H
 
-#include <stdint.h>
+#include "stdlib/blas/base/shared.h"
 
 /*
 * If C++, prevent name mangling so that the compiler emits a binary file having undecorated names, thus mirroring the behavior of a C compiler.
@@ -31,7 +31,12 @@ extern "C" {
 /**
 * Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
 */
-float stdlib_strided_snanvariancepn( const int64_t N, const float correction, const float *X, const int64_t stride );
+float API_SUFFIX(stdlib_strided_snanvariancepn)( const CBLAS_INT N, const float correction, const float *X, const CBLAS_INT strideX );
+
+/**
+* Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.
+*/
+float API_SUFFIX(stdlib_strided_snanvariancepn_ndarray)( const CBLAS_INT N, const float correction, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
 
 #ifdef __cplusplus
 }
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/index.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/index.js
index 48ff38fb8922..5b711544871c 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/index.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/index.js
@@ -34,13 +34,11 @@
 *
 * @example
 * var Float32Array = require( '@stdlib/array/float32' );
-* var floor = require( '@stdlib/math/base/special/floor' );
 * var snanvariancepn = require( '@stdlib/stats/base/snanvariancepn' );
 *
 * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
-* var N = floor( x.length / 2 );
 *
-* var v = snanvariancepn.ndarray( N, 1, x, 2, 1 );
+* var v = snanvariancepn.ndarray( 5, 1, x, 2, 1 );
 * // returns 6.25
 */
 
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/ndarray.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/ndarray.js
index dd341090edb8..8cb371241ed5 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/ndarray.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/ndarray.js
@@ -46,21 +46,19 @@ var WORKSPACE = [ 0.0, 0 ];
 * @param {PositiveInteger} N - number of indexed elements
 * @param {number} correction - degrees of freedom adjustment
 * @param {Float32Array} x - input array
-* @param {integer} stride - stride length
-* @param {NonNegativeInteger} offset - starting index
+* @param {integer} strideX - stride length
+* @param {NonNegativeInteger} offsetX - starting index
 * @returns {number} variance
 *
 * @example
 * var Float32Array = require( '@stdlib/array/float32' );
-* var floor = require( '@stdlib/math/base/special/floor' );
 *
 * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
-* var N = floor( x.length / 2 );
 *
-* var v = snanvariancepn( N, 1, x, 2, 1 );
+* var v = snanvariancepn( 5, 1, x, 2, 1 );
 * // returns 6.25
 */
-function snanvariancepn( N, correction, x, stride, offset ) {
+function snanvariancepn( N, correction, x, strideX, offsetX ) {
 	var mu;
 	var ix;
 	var M2;
@@ -74,19 +72,19 @@ function snanvariancepn( N, correction, x, stride, offset ) {
 	if ( N <= 0 ) {
 		return NaN;
 	}
-	if ( N === 1 || stride === 0 ) {
-		v = x[ offset ];
+	if ( N === 1 || strideX === 0 ) {
+		v = x[ offsetX ];
 		if ( v === v && N-correction > 0.0 ) {
 			return 0.0;
 		}
 		return NaN;
 	}
-	ix = offset;
+	ix = offsetX;
 
 	// Compute an estimate for the mean...
 	WORKSPACE[ 0 ] = 0.0;
 	WORKSPACE[ 1 ] = 0;
-	snansumpw( N, WORKSPACE, x, stride, ix );
+	snansumpw( N, WORKSPACE, x, strideX, ix );
 	n = WORKSPACE[ 1 ];
 	nc = n - correction;
 	if ( nc <= 0.0 ) {
@@ -105,7 +103,7 @@ function snanvariancepn( N, correction, x, stride, offset ) {
 			M = float64ToFloat32( M + d );
 			n += 1;
 		}
-		ix += stride;
+		ix += strideX;
 	}
 	return float64ToFloat32( float64ToFloat32(M2/nc) - float64ToFloat32(float64ToFloat32(M/n)*float64ToFloat32(M/nc)) ); // eslint-disable-line max-len
 }
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/ndarray.native.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/ndarray.native.js
index 7a2ca055b51e..8c4c2e0486a8 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/ndarray.native.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/ndarray.native.js
@@ -20,8 +20,7 @@
 
 // MODULES //
 
-var Float32Array = require( '@stdlib/array/float32' );
-var addon = require( './snanvariancepn.native.js' );
+var addon = require( './../src/addon.node' );
 
 
 // MAIN //
@@ -32,27 +31,20 @@ var addon = require( './snanvariancepn.native.js' );
 * @param {PositiveInteger} N - number of indexed elements
 * @param {number} correction - degrees of freedom adjustment
 * @param {Float32Array} x - input array
-* @param {integer} stride - stride length
-* @param {NonNegativeInteger} offset - starting index
+* @param {integer} strideX - stride length
+* @param {NonNegativeInteger} offsetX - starting index
 * @returns {number} variance
 *
 * @example
 * var Float32Array = require( '@stdlib/array/float32' );
-* var floor = require( '@stdlib/math/base/special/floor' );
 *
 * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
-* var N = floor( x.length / 2 );
 *
-* var v = snanvariancepn( N, 1, x, 2, 1 );
+* var v = snanvariancepn( 5, 1, x, 2, 1 );
 * // returns 6.25
 */
-function snanvariancepn( N, correction, x, stride, offset ) {
-	var view;
-	if ( stride < 0 ) {
-		offset += (N-1) * stride;
-	}
-	view = new Float32Array( x.buffer, x.byteOffset+(x.BYTES_PER_ELEMENT*offset), x.length-offset ); // eslint-disable-line max-len
-	return addon( N, correction, view, stride );
+function snanvariancepn( N, correction, x, strideX, offsetX ) {
+	return addon.ndarray( N, correction, x, strideX, offsetX );
 }
 
 
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snansumpw.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snansumpw.js
index e09fce5b3698..fc8ba7b4b62c 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snansumpw.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snansumpw.js
@@ -47,22 +47,20 @@ var BLOCKSIZE = 128;
 * @param {PositiveInteger} N - number of indexed elements
 * @param {NumericArray} out - two-element output array whose first element is the accumulated sum and whose second element is the accumulated number of summed values
 * @param {Float32Array} x - input array
-* @param {integer} stride - stride length
-* @param {NonNegativeInteger} offset - starting index
+* @param {integer} strideX - stride length
+* @param {NonNegativeInteger} offsetX - starting index
 * @returns {NumericArray} output array
 *
 * @example
 * var Float32Array = require( '@stdlib/array/float32' );
-* var floor = require( '@stdlib/math/base/special/floor' );
 *
 * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
-* var N = floor( x.length / 2 );
 *
 * var out = [ 0.0, 0 ];
-* var v = snansumpw( N, out, x, 2, 1 );
+* var v = snansumpw( 5, out, x, 2, 1 );
 * // returns [ 5.0, 4 ]
 */
-function snansumpw( N, out, x, stride, offset ) {
+function snansumpw( N, out, x, strideX, offsetX ) {
 	var ix;
 	var s0;
 	var s1;
@@ -78,7 +76,7 @@ function snansumpw( N, out, x, stride, offset ) {
 	var v;
 	var i;
 
-	ix = offset;
+	ix = offsetX;
 	if ( N < 8 ) {
 		// Use simple summation...
 		s = 0.0;
@@ -89,7 +87,7 @@ function snansumpw( N, out, x, stride, offset ) {
 				s = float64ToFloat32( s + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 		}
 		out[ 0 ] = float64ToFloat32( out[ 0 ] + s );
 		out[ 1 ] += n;
@@ -114,49 +112,49 @@ function snansumpw( N, out, x, stride, offset ) {
 				s0 = float64ToFloat32( s0 + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = x[ ix ];
 			if ( v === v ) {
 				s1 = float64ToFloat32( s1 + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = x[ ix ];
 			if ( v === v ) {
 				s2 = float64ToFloat32( s2 + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = x[ ix ];
 			if ( v === v ) {
 				s3 = float64ToFloat32( s3 + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = x[ ix ];
 			if ( v === v ) {
 				s4 = float64ToFloat32( s4 + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = x[ ix ];
 			if ( v === v ) {
 				s5 = float64ToFloat32( s5 + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = x[ ix ];
 			if ( v === v ) {
 				s6 = float64ToFloat32( s6 + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = x[ ix ];
 			if ( v === v ) {
 				s7 = float64ToFloat32( s7 + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 		}
 		// Pairwise sum the accumulators:
 		s = float64ToFloat32( float64ToFloat32(float64ToFloat32(s0+s1) + float64ToFloat32(s2+s3)) + float64ToFloat32(float64ToFloat32(s4+s5) + float64ToFloat32(s6+s7)) ); // eslint-disable-line max-len
@@ -168,7 +166,7 @@ function snansumpw( N, out, x, stride, offset ) {
 				s = float64ToFloat32( s + v );
 				n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 		}
 		out[ 0 ] = float64ToFloat32( out[ 0 ] + s );
 		out[ 1 ] += n;
@@ -177,7 +175,7 @@ function snansumpw( N, out, x, stride, offset ) {
 	// Recurse by dividing by two, but avoiding non-multiples of unroll factor...
 	n = floor( N/2 );
 	n -= n % 8;
-	return float64ToFloat32( snansumpw( n, out, x, stride, ix ) + snansumpw( N-n, out, x, stride, ix+(n*stride) ) ); // eslint-disable-line max-len
+	return float64ToFloat32( snansumpw( n, out, x, strideX, ix ) + snansumpw( N-n, out, x, strideX, ix+(n*strideX) ) ); // eslint-disable-line max-len
 }
 
 
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snanvariancepn.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snanvariancepn.js
index 4252fbec5e6e..6364de7bead4 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snanvariancepn.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snanvariancepn.js
@@ -20,13 +20,8 @@
 
 // MODULES //
 
-var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' );
-var snansumpw = require( './snansumpw.js' );
-
-
-// VARIABLES //
-
-var WORKSPACE = [ 0.0, 0 ];
+var stride2offset = require( '@stdlib/strided/base/stride2offset' );
+var ndarray = require( './ndarray.js' );
 
 
 // MAIN //
@@ -46,69 +41,19 @@ var WORKSPACE = [ 0.0, 0 ];
 * @param {PositiveInteger} N - number of indexed elements
 * @param {number} correction - degrees of freedom adjustment
 * @param {Float32Array} x - input array
-* @param {integer} stride - stride length
+* @param {integer} strideX - stride length
 * @returns {number} variance
 *
 * @example
 * var Float32Array = require( '@stdlib/array/float32' );
 *
 * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
-* var N = x.length;
 *
-* var v = snanvariancepn( N, 1, x, 1 );
+* var v = snanvariancepn( x.length, 1, x, 1 );
 * // returns ~4.3333
 */
-function snanvariancepn( N, correction, x, stride ) {
-	var mu;
-	var ix;
-	var M2;
-	var nc;
-	var M;
-	var d;
-	var v;
-	var n;
-	var i;
-
-	if ( N <= 0 ) {
-		return NaN;
-	}
-	if ( N === 1 || stride === 0 ) {
-		v = x[ 0 ];
-		if ( v === v && N-correction > 0.0 ) {
-			return 0.0;
-		}
-		return NaN;
-	}
-	if ( stride < 0 ) {
-		ix = (1-N) * stride;
-	} else {
-		ix = 0;
-	}
-	// Compute an estimate for the mean...
-	WORKSPACE[ 0 ] = 0.0;
-	WORKSPACE[ 1 ] = 0;
-	snansumpw( N, WORKSPACE, x, stride, ix );
-	n = WORKSPACE[ 1 ];
-	nc = n - correction;
-	if ( nc <= 0.0 ) {
-		return NaN;
-	}
-	mu = float64ToFloat32( WORKSPACE[ 0 ] / n );
-
-	// Compute the variance...
-	M2 = 0.0;
-	M = 0.0;
-	for ( i = 0; i < N; i++ ) {
-		v = x[ ix ];
-		if ( v === v ) {
-			d = float64ToFloat32( v - mu );
-			M2 = float64ToFloat32( M2 + float64ToFloat32( d*d ) );
-			M = float64ToFloat32( M + d );
-			n += 1;
-		}
-		ix += stride;
-	}
-	return float64ToFloat32( float64ToFloat32(M2/nc) - float64ToFloat32(float64ToFloat32(M/n)*float64ToFloat32(M/nc)) ); // eslint-disable-line max-len
+function snanvariancepn( N, correction, x, strideX ) {
+	return ndarray( N, correction, x, strideX, stride2offset( N, strideX ) );
 }
 
 
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snanvariancepn.native.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snanvariancepn.native.js
index 46b7e17eab5b..3cbe2d351c1d 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snanvariancepn.native.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/lib/snanvariancepn.native.js
@@ -31,20 +31,19 @@ var addon = require( './../src/addon.node' );
 * @param {PositiveInteger} N - number of indexed elements
 * @param {number} correction - degrees of freedom adjustment
 * @param {Float32Array} x - input array
-* @param {integer} stride - stride length
+* @param {integer} strideX - stride length
 * @returns {number} variance
 *
 * @example
 * var Float32Array = require( '@stdlib/array/float32' );
 *
 * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
-* var N = x.length;
 *
-* var v = snanvariancepn( N, 1, x, 1 );
+* var v = snanvariancepn( x.length, 1, x, 1 );
 * // returns ~4.3333
 */
-function snanvariancepn( N, correction, x, stride ) {
-	return addon( N, correction, x, stride );
+function snanvariancepn( N, correction, x, strideX ) {
+	return addon( N, correction, x, strideX );
 }
 
 
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/manifest.json b/lib/node_modules/@stdlib/stats/base/snanvariancepn/manifest.json
index 9e968d3aa6ae..d849b5d496d9 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/manifest.json
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/manifest.json
@@ -1,6 +1,7 @@
 {
   "options": {
-    "task": "build"
+    "task": "build",
+    "wasm": false
   },
   "fields": [
     {
@@ -27,17 +28,19 @@
   "confs": [
     {
       "task": "build",
+      "wasm": false,
       "src": [
-        "./src/snanvariancepn.c"
+        "./src/main.c"
       ],
       "include": [
         "./include"
       ],
-      "libraries": [
-        "-lm"
-      ],
+      "libraries": [],
       "libpath": [],
       "dependencies": [
+        "@stdlib/blas/base/shared",
+        "@stdlib/strided/base/stride2offset",
+        "@stdlib/math/base/assert/is-nanf",
         "@stdlib/napi/export",
         "@stdlib/napi/argv",
         "@stdlib/napi/argv-int64",
@@ -48,31 +51,54 @@
     },
     {
       "task": "benchmark",
+      "wasm": false,
       "src": [
-        "./src/snanvariancepn.c"
+        "./src/main.c"
       ],
       "include": [
         "./include"
       ],
-      "libraries": [
-        "-lm"
-      ],
+      "libraries": [],
       "libpath": [],
-      "dependencies": []
+      "dependencies": [
+        "@stdlib/blas/base/shared",
+        "@stdlib/strided/base/stride2offset",
+        "@stdlib/math/base/assert/is-nanf"
+      ]
     },
     {
       "task": "examples",
+      "wasm": false,
       "src": [
-        "./src/snanvariancepn.c"
+        "./src/main.c"
       ],
       "include": [
         "./include"
       ],
-      "libraries": [
-        "-lm"
+      "libraries": [],
+      "libpath": [],
+      "dependencies": [
+        "@stdlib/blas/base/shared",
+        "@stdlib/strided/base/stride2offset",
+        "@stdlib/math/base/assert/is-nanf"
+      ]
+    },
+    {
+      "task": "",
+      "wasm": true,
+      "src": [
+        "./src/main.c"
       ],
+      "include": [
+        "./include"
+      ],
+      "libraries": [],
       "libpath": [],
-      "dependencies": []
+      "dependencies": [
+        "@stdlib/blas/base/shared",
+        "@stdlib/strided/base/stride2offset",
+        "@stdlib/math/base/assert/is-nanf"
+      ]
     }
   ]
 }
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/src/addon.c b/lib/node_modules/@stdlib/stats/base/snanvariancepn/src/addon.c
index 5d2c9e66be5b..6bd8b68d752a 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/src/addon.c
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/src/addon.c
@@ -17,6 +17,7 @@
 */
 
 #include "stdlib/stats/base/snanvariancepn.h"
+#include "stdlib/blas/base/shared.h"
 #include "stdlib/napi/export.h"
 #include "stdlib/napi/argv.h"
 #include "stdlib/napi/argv_int64.h"
@@ -35,11 +36,29 @@
 static napi_value addon( napi_env env, napi_callback_info info ) {
 	STDLIB_NAPI_ARGV( env, info, argv, argc, 4 );
 	STDLIB_NAPI_ARGV_INT64( env, N, argv, 0 );
+	STDLIB_NAPI_ARGV_INT64( env, strideX, argv, 3 );
 	STDLIB_NAPI_ARGV_FLOAT( env, correction, argv, 1 );
-	STDLIB_NAPI_ARGV_INT64( env, stride, argv, 3 );
-	STDLIB_NAPI_ARGV_STRIDED_FLOAT32ARRAY( env, X, N, stride, argv, 2 );
-	STDLIB_NAPI_CREATE_DOUBLE( env, (double)stdlib_strided_snanvariancepn( N, correction, X, stride ), v );
+	STDLIB_NAPI_ARGV_STRIDED_FLOAT32ARRAY( env, X, N, strideX, argv, 2 );
+	STDLIB_NAPI_CREATE_DOUBLE( env, (double)API_SUFFIX(stdlib_strided_snanvariancepn)( N, correction, X, strideX ), v );
 	return v;
 }
 
-STDLIB_NAPI_MODULE_EXPORT_FCN( addon )
+/**
+* Receives JavaScript callback invocation data.
+*
+* @param env    environment under which the function is invoked
+* @param info   callback data
+* @return       Node-API value
+*/
+static napi_value addon_method( napi_env env, napi_callback_info info ) {
+	STDLIB_NAPI_ARGV( env, info, argv, argc, 5 );
+	STDLIB_NAPI_ARGV_INT64( env, N, argv, 0 );
+	STDLIB_NAPI_ARGV_INT64( env, strideX, argv, 3 );
+	STDLIB_NAPI_ARGV_INT64( env, offsetX, argv, 4 );
+	STDLIB_NAPI_ARGV_FLOAT( env, correction, argv, 1 );
+	STDLIB_NAPI_ARGV_STRIDED_FLOAT32ARRAY( env, X, N, strideX, argv, 2 );
+	STDLIB_NAPI_CREATE_DOUBLE( env, (double)API_SUFFIX(stdlib_strided_snanvariancepn_ndarray)( N, correction, X, strideX, offsetX ), v );
+	return v;
+}
+
+STDLIB_NAPI_MODULE_EXPORT_FCN_WITH_METHOD( addon, "ndarray", addon_method )
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/src/snanvariancepn.c b/lib/node_modules/@stdlib/stats/base/snanvariancepn/src/main.c
similarity index 55%
rename from lib/node_modules/@stdlib/stats/base/snanvariancepn/src/snanvariancepn.c
rename to lib/node_modules/@stdlib/stats/base/snanvariancepn/src/main.c
index a945022c2afb..526ddce88ecd 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/src/snanvariancepn.c
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/src/main.c
@@ -17,7 +17,9 @@
 */
 
 #include "stdlib/stats/base/snanvariancepn.h"
-#include <stdint.h>
+#include "stdlib/strided/base/stride2offset.h"
+#include "stdlib/math/base/assert/is_nanf.h"
+#include "stdlib/blas/base/shared.h"
 
 /**
 * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation.
@@ -30,20 +32,19 @@
 *
 * -   Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).
 *
-* @param N       number of indexed elements
-* @param W       two-element output array
-* @param X       input array
-* @param stride  stride length
-* @return        output value
+* @param N        number of indexed elements
+* @param X        input array
+* @param strideX  stride length
+* @param offsetX  starting index
+* @param n        pointer
+* @return         output value
 */
-static void snansumpw( const int64_t N, double *W, const float *X, const int64_t stride ) {
-	int64_t ix;
-	float *xp1;
-	float *xp2;
+static float snansumpw( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, CBLAS_INT *n ) {
+	CBLAS_INT ix;
+	CBLAS_INT M;
+	CBLAS_INT m;
+	CBLAS_INT i;
 	float sum;
-	int64_t M;
-	int64_t n;
-	int64_t i;
 	float s0;
 	float s1;
 	float s2;
@@ -54,26 +55,28 @@ static void snansumpw( const int64_t N, double *W, const float *X, const int64_t
 	float s7;
 	float v;
 
-	if ( stride < 0 ) {
-		ix = (1-N) * stride;
-	} else {
-		ix = 0;
+	sum = 0.0f;
+	ix = offsetX;
+	if ( strideX == 0 ) {
+		if ( stdlib_base_is_nanf( X[ ix ] ) ) {
+			return sum;
+		}
+		sum = X[ ix ] * N;
+		*n += N;
+		return sum;
 	}
 	if ( N < 8 ) {
 		// Use simple summation...
 		sum = 0.0f;
-		n = 0;
 		for ( i = 0; i < N; i++ ) {
 			v = X[ ix ];
 			if ( v == v ) {
-				sum += X[ ix ];
-				n += 1;
+				sum += v;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 		}
-		W[ 0 ] += (double)sum;
-		W[ 1 ] += (double)n;
-		return;
+		return sum;
 	}
 	// Blocksize for pairwise summation: 128 (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.)
 	if ( N <= 128 ) {
@@ -86,87 +89,76 @@ static void snansumpw( const int64_t N, double *W, const float *X, const int64_t
 		s5 = 0.0f;
 		s6 = 0.0f;
 		s7 = 0.0f;
-		n = 0;
 
 		M = N % 8;
 		for ( i = 0; i < N-M; i += 8 ) {
 			v = X[ ix ];
 			if ( v == v ) {
 				s0 += v;
-				n += 1;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = X[ ix ];
 			if ( v == v ) {
 				s1 += v;
-				n += 1;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = X[ ix ];
 			if ( v == v ) {
 				s2 += v;
-				n += 1;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = X[ ix ];
 			if ( v == v ) {
 				s3 += v;
-				n += 1;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = X[ ix ];
 			if ( v == v ) {
 				s4 += v;
-				n += 1;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = X[ ix ];
 			if ( v == v ) {
 				s5 += v;
-				n += 1;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = X[ ix ];
 			if ( v == v ) {
 				s6 += v;
-				n += 1;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 			v = X[ ix ];
 			if ( v == v ) {
 				s7 += v;
-				n += 1;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 		}
 		// Pairwise sum the accumulators:
-		sum = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));
+		sum = ( (s0+s1) + (s2+s3) ) + ( (s4+s5) + (s6+s7) );
 
 		// Clean-up loop...
 		for (; i < N; i++ ) {
 			v = X[ ix ];
 			if ( v == v ) {
 				sum += X[ ix ];
-				n += 1;
+				*n += 1;
 			}
-			ix += stride;
+			ix += strideX;
 		}
-		W[ 0 ] += (double)sum;
-		W[ 1 ] += (double)n;
-		return;
+		return sum;
 	}
 	// Recurse by dividing by two, but avoiding non-multiples of unroll factor...
-	n = N / 2;
-	n -= n % 8;
-	if ( stride < 0 ) {
-		xp1 = (float *)X + ( (n-N)*stride );
-		xp2 = (float *)X;
-	} else {
-		xp1 = (float *)X;
-		xp2 = (float *)X + ( n*stride );
-	}
-	snansumpw( n, W, xp1, stride );
-	snansumpw( N-n, W, xp2, stride );
+	m = N / 2;
+	m -= m % 8;
+	return snansumpw( m, X, strideX, ix, n ) + snansumpw( N-m, X, strideX, ix+(m*strideX), n );
 }
 
 /**
@@ -181,21 +173,46 @@ static void snansumpw( const int64_t N, double *W, const float *X, const int64_t
 * -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
 * -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
 *
-* @param N           number of indexed elements
-* @param correction  degrees of freedom adjustment
-* @param X           input array
-* @param stride      stride length
-* @return            output value
+* @param N            number of indexed elements
+* @param correction   degrees of freedom adjustment
+* @param X            input array
+* @param strideX      stride length
+* @return             output value
 */
-float stdlib_strided_snanvariancepn( const int64_t N, const float correction, const float *X, const int64_t stride ) {
-	double W[] = { 0.0, 0.0 };
-	int64_t ix;
-	int64_t i;
+float API_SUFFIX(stdlib_strided_snanvariancepn)( const CBLAS_INT N, const float correction, const float *X, const CBLAS_INT strideX ) {
+	CBLAS_INT ox;
+	ox = stdlib_strided_stride2offset( N, strideX );
+	return API_SUFFIX(stdlib_strided_snanvariancepn_ndarray)( N, correction, X, strideX, ox );
+}
+
+/**
+* Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.
+*
+* ## Method
+*
+* -   This implementation uses a two-pass approach, as suggested by Neely (1966).
+*
+* ## References
+*
+* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
+* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
+*
+* @param N            number of indexed elements
+* @param correction   degrees of freedom adjustment
+* @param X            input array
+* @param strideX      stride length
+* @param offsetX      starting index
+* @return             output value
+*/
+float API_SUFFIX(stdlib_strided_snanvariancepn_ndarray)( const CBLAS_INT N, const float correction, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX ) {
+	CBLAS_INT ix;
+	CBLAS_INT i;
+	CBLAS_INT n;
 	double nc;
 	double dM;
-	double n;
-	float M2;
+	float sum;
 	float mu;
+	float M2;
 	float M;
 	float d;
 	float v;
@@ -203,26 +220,22 @@ float stdlib_strided_snanvariancepn( const int64_t N, const float correction, co
 	if ( N <= 0 ) {
 		return 0.0f / 0.0f; // NaN
 	}
-	if ( N == 1 || stride == 0 ) {
-		v = X[ 0 ];
+	if ( N == 1 || strideX == 0 ) {
+		v = X[ offsetX ];
 		if ( v == v && (double)N-(double)correction > 0.0 ) {
 			return 0.0f;
 		}
 		return 0.0f / 0.0f; // NaN
 	}
 	// Compute an estimate for the mean...
-	snansumpw( N, W, X, stride );
-	n = W[ 1 ];
+	n = 0;
+	sum = snansumpw( N, X, strideX, offsetX, &n );
 	nc = n - (double)correction;
 	if ( nc <= 0.0 ) {
 		return 0.0f / 0.0f; // NaN
 	}
-	if ( stride < 0 ) {
-		ix = (1-N) * stride;
-	} else {
-		ix = 0;
-	}
-	mu = (float)( W[ 0 ] / n );
+	ix = offsetX;
+	mu = (float)( (double)sum / (double)n );
 
 	// Compute the variance...
 	M2 = 0.0f;
@@ -233,9 +246,8 @@ float stdlib_strided_snanvariancepn( const int64_t N, const float correction, co
 			d = v - mu;
 			M2 += d * d;
 			M += d;
-			n += 1;
 		}
-		ix += stride;
+		ix += strideX;
 	}
 	dM = (double)M;
 	return (float)((double)M2/nc) - ( (float)(dM/n) * (float)(dM/nc) );
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.ndarray.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.ndarray.js
index 18a9eaf4be87..ee221ba51392 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.ndarray.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.ndarray.js
@@ -21,7 +21,6 @@
 // MODULES //
 
 var tape = require( 'tape' );
-var floor = require( '@stdlib/math/base/special/floor' );
 var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' );
 var Float32Array = require( '@stdlib/array/float32' );
@@ -214,7 +213,6 @@ tape( 'if provided a `correction` parameter yielding a correction term less than
 });
 
 tape( 'the function supports a `stride` parameter', function test( t ) {
-	var N;
 	var x;
 	var v;
 
@@ -231,15 +229,13 @@ tape( 'the function supports a `stride` parameter', function test( t ) {
 		NaN
 	]);
 
-	N = floor( x.length / 2 );
-	v = snanvariancepn( N, 1, x, 2, 0 );
+	v = snanvariancepn( 5, 1, x, 2, 0 );
 
 	t.strictEqual( v, 6.25, 'returns expected value' );
 	t.end();
 });
 
 tape( 'the function supports a negative `stride` parameter', function test( t ) {
-	var N;
 	var x;
 	var v;
 	var i;
@@ -256,9 +252,8 @@ tape( 'the function supports a negative `stride` parameter', function test( t )
 		4.0,  // 0
 		2.0
 	]);
-	N = floor( x.length / 2 );
 
-	v = snanvariancepn( N, 1, x, -2, 8 );
+	v = snanvariancepn( 5, 1, x, -2, 8 );
 	t.strictEqual( v, 6.25, 'returns expected value' );
 
 	x = new Float32Array( 1e3 );
@@ -294,7 +289,6 @@ tape( 'if provided a `stride` parameter equal to `0`, the function returns `0` p
 });
 
 tape( 'the function supports an `offset` parameter', function test( t ) {
-	var N;
 	var x;
 	var v;
 
@@ -310,9 +304,8 @@ tape( 'the function supports an `offset` parameter', function test( t ) {
 		NaN,
 		NaN   // 4
 	]);
-	N = floor( x.length / 2 );
 
-	v = snanvariancepn( N, 1, x, 2, 1 );
+	v = snanvariancepn( 5, 1, x, 2, 1 );
 	t.strictEqual( v, 6.25, 'returns expected value' );
 
 	t.end();
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.ndarray.native.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.ndarray.native.js
index 506ec9192f9e..f3cd0e840545 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.ndarray.native.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.ndarray.native.js
@@ -22,7 +22,6 @@
 
 var resolve = require( 'path' ).resolve;
 var tape = require( 'tape' );
-var floor = require( '@stdlib/math/base/special/floor' );
 var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' );
 var Float32Array = require( '@stdlib/array/float32' );
@@ -223,7 +222,6 @@ tape( 'if provided a `correction` parameter yielding a correction term less than
 });
 
 tape( 'the function supports a `stride` parameter', opts, function test( t ) {
-	var N;
 	var x;
 	var v;
 
@@ -240,15 +238,13 @@ tape( 'the function supports a `stride` parameter', opts, function test( t ) {
 		NaN
 	]);
 
-	N = floor( x.length / 2 );
-	v = snanvariancepn( N, 1, x, 2, 0 );
+	v = snanvariancepn( 5, 1, x, 2, 0 );
 
 	t.strictEqual( v, 6.25, 'returns expected value' );
 	t.end();
 });
 
 tape( 'the function supports a negative `stride` parameter', opts, function test( t ) {
-	var N;
 	var x;
 	var v;
 	var i;
@@ -265,9 +261,8 @@ tape( 'the function supports a negative `stride` parameter', opts, function test
 		4.0,  // 0
 		2.0
 	]);
-	N = floor( x.length / 2 );
 
-	v = snanvariancepn( N, 1, x, -2, 8 );
+	v = snanvariancepn( 5, 1, x, -2, 8 );
 	t.strictEqual( v, 6.25, 'returns expected value' );
 
 	x = new Float32Array( 1e3 );
@@ -303,7 +298,6 @@ tape( 'if provided a `stride` parameter equal to `0`, the function returns `0` p
 });
 
 tape( 'the function supports an `offset` parameter', opts, function test( t ) {
-	var N;
 	var x;
 	var v;
 
@@ -319,9 +313,8 @@ tape( 'the function supports an `offset` parameter', opts, function test( t ) {
 		NaN,
 		NaN   // 4
 	]);
-	N = floor( x.length / 2 );
 
-	v = snanvariancepn( N, 1, x, 2, 1 );
+	v = snanvariancepn( 5, 1, x, 2, 1 );
 	t.strictEqual( v, 6.25, 'returns expected value' );
 
 	t.end();
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.snanvariancepn.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.snanvariancepn.js
index 6b7588a79921..73ac03fc1657 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.snanvariancepn.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.snanvariancepn.js
@@ -21,7 +21,6 @@
 // MODULES //
 
 var tape = require( 'tape' );
-var floor = require( '@stdlib/math/base/special/floor' );
 var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' );
 var Float32Array = require( '@stdlib/array/float32' );
@@ -214,7 +213,6 @@ tape( 'if provided a `correction` parameter yielding a correction term less than
 });
 
 tape( 'the function supports a `stride` parameter', function test( t ) {
-	var N;
 	var x;
 	var v;
 
@@ -231,15 +229,13 @@ tape( 'the function supports a `stride` parameter', function test( t ) {
 		NaN
 	]);
 
-	N = floor( x.length / 2 );
-	v = snanvariancepn( N, 1, x, 2 );
+	v = snanvariancepn( 5, 1, x, 2 );
 
 	t.strictEqual( v, 6.25, 'returns expected value' );
 	t.end();
 });
 
 tape( 'the function supports a negative `stride` parameter', function test( t ) {
-	var N;
 	var x;
 	var v;
 	var i;
@@ -256,9 +252,8 @@ tape( 'the function supports a negative `stride` parameter', function test( t )
 		4.0,  // 0
 		2.0
 	]);
-	N = floor( x.length / 2 );
 
-	v = snanvariancepn( N, 1, x, -2 );
+	v = snanvariancepn( 5, 1, x, -2 );
 	t.strictEqual( v, 6.25, 'returns expected value' );
 
 	x = new Float32Array( 1e3 );
@@ -296,7 +291,6 @@ tape( 'if provided a `stride` parameter equal to `0`, the function returns `0` p
 tape( 'the function supports view offsets', function test( t ) {
 	var x0;
 	var x1;
-	var N;
 	var v;
 
 	x0 = new Float32Array([
@@ -314,9 +308,8 @@ tape( 'the function supports view offsets', function test( t ) {
 	]);
 
 	x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
-	N = floor(x1.length / 2);
 
-	v = snanvariancepn( N, 1, x1, 2 );
+	v = snanvariancepn( 5, 1, x1, 2 );
 	t.strictEqual( v, 6.25, 'returns expected value' );
 
 	t.end();
diff --git a/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.snanvariancepn.native.js b/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.snanvariancepn.native.js
index db52ef0db2d0..91fb98216d57 100644
--- a/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.snanvariancepn.native.js
+++ b/lib/node_modules/@stdlib/stats/base/snanvariancepn/test/test.snanvariancepn.native.js
@@ -22,7 +22,6 @@
 
 var resolve = require( 'path' ).resolve;
 var tape = require( 'tape' );
-var floor = require( '@stdlib/math/base/special/floor' );
 var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' );
 var Float32Array = require( '@stdlib/array/float32' );
@@ -223,7 +222,6 @@ tape( 'if provided a `correction` parameter yielding a correction term less than
 });
 
 tape( 'the function supports a `stride` parameter', opts, function test( t ) {
-	var N;
 	var x;
 	var v;
 
@@ -240,15 +238,13 @@ tape( 'the function supports a `stride` parameter', opts, function test( t ) {
 		NaN
 	]);
 
-	N = floor( x.length / 2 );
-	v = snanvariancepn( N, 1, x, 2 );
+	v = snanvariancepn( 5, 1, x, 2 );
 
 	t.strictEqual( v, 6.25, 'returns expected value' );
 	t.end();
 });
 
 tape( 'the function supports a negative `stride` parameter', opts, function test( t ) {
-	var N;
 	var x;
 	var v;
 	var i;
@@ -265,9 +261,8 @@ tape( 'the function supports a negative `stride` parameter', opts, function test
 		4.0,  // 0
 		2.0
 	]);
-	N = floor( x.length / 2 );
 
-	v = snanvariancepn( N, 1, x, -2 );
+	v = snanvariancepn( 5, 1, x, -2 );
 	t.strictEqual( v, 6.25, 'returns expected value' );
 
 	x = new Float32Array( 1e3 );
@@ -305,7 +300,6 @@ tape( 'if provided a `stride` parameter equal to `0`, the function returns `0` p
 tape( 'the function supports view offsets', opts, function test( t ) {
 	var x0;
 	var x1;
-	var N;
 	var v;
 
 	x0 = new Float32Array([
@@ -323,9 +317,8 @@ tape( 'the function supports view offsets', opts, function test( t ) {
 	]);
 
 	x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
-	N = floor(x1.length / 2);
 
-	v = snanvariancepn( N, 1, x1, 2 );
+	v = snanvariancepn( 5, 1, x1, 2 );
 	t.strictEqual( v, 6.25, 'returns expected value' );
 
 	t.end();