Perform one of the matrix-vector operations
y = α*A*x + β*y
ory = α*A**T*x + β*y
.
var dgemv = require( '@stdlib/blas/base/dgemv' );
Performs one of the matrix-vector operations y = α*A*x + β*y
or y = α*A**T*x + β*y
, where α
and β
are scalars, x
and y
are vectors, and A
is an M
by N
matrix.
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x = new Float64Array( [ 1.0, 1.0, 1.0 ] );
var y = new Float64Array( [ 1.0, 1.0 ] );
dgemv( 'row-major', 'no-transpose', 2, 3, 1.0, A, 3, x, 1, 1.0, y, 1 );
// y => <Float64Array>[ 7.0, 16.0 ]
The function has the following parameters:
- ord: storage layout.
- trans: specifies whether
A
should be transposed, conjugate-transposed, or not transposed. - M: number of rows in the matrix
A
. - N: number of columns in the matrix
A
. - α: scalar constant.
- A: input matrix stored in linear memory as a
Float64Array
. - lda: stride of the first dimension of
A
(leading dimension ofA
). - x: input
Float64Array
. - sx: index increment for
x
. - β: scalar constant.
- y: output
Float64Array
. - sy: index increment for
y
.
The stride parameters determine how operations are performed. For example, to iterate over every other element in x
and y
,
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0 ] );
var x = new Float64Array( [ 1.0, 0.0, 1.0, 0.0 ] );
var y = new Float64Array( [ 1.0, 0.0, 1.0, 0.0 ] );
dgemv( 'row-major', 'no-transpose', 2, 2, 1.0, A, 2, x, 2, 1.0, y, 2 );
// y => <Float64Array>[ 4.0, 0.0, 8.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
// Initial arrays...
var x0 = new Float64Array( [ 0.0, 1.0, 1.0 ] );
var y0 = new Float64Array( [ 0.0, 1.0, 1.0 ] );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
dgemv( 'row-major', 'no-transpose', 2, 2, 1.0, A, 2, x1, -1, 1.0, y1, -1 );
// y0 => <Float64Array>[ 0.0, 8.0, 4.0 ]
Performs one of the matrix-vector operations y = α*A*x + β*y
or y = α*A**T*x + β*y
, using alternative indexing semantics and where α
and β
are scalars, x
and y
are vectors, and A
is an M
by N
matrix.
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x = new Float64Array( [ 1.0, 1.0, 1.0 ] );
var y = new Float64Array( [ 1.0, 1.0 ] );
dgemv.ndarray( 'no-transpose', 2, 3, 1.0, A, 3, 1, 0, x, 1, 0, 1.0, y, 1, 0 );
// y => <Float64Array>[ 7.0, 16.0 ]
The function has the following additional parameters:
- sa1: stride of the first dimension of
A
. - sa2: stride of the second dimension of
A
. - oa: starting index for
A
. - ox: starting index for
x
. - oy: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x = new Float64Array( [ 0.0, 1.0, 2.0, 3.0 ] );
var y = new Float64Array( [ 7.0, 8.0, 9.0, 10.0 ] );
dgemv.ndarray( 'no-transpose', 2, 3, 1.0, A, 3, 1, 0, x, 1, 1, 1.0, y, -2, 2 );
// y => <Float64Array>[ 39, 8, 23, 10 ]
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dgemv = require( '@stdlib/blas/base/dgemv' );
var opts = {
'dtype': 'float64'
};
var M = 3;
var N = 3;
var A = discreteUniform( M*N, 0, 255, opts );
var x = discreteUniform( N, 0, 255, opts );
var y = discreteUniform( M, 0, 255, opts );
dgemv( 'row-major', 'no-transpose', M, N, 1.0, A, N, x, -1, 1.0, y, -1 );
console.log( y );
#include "stdlib/blas/base/dgemv.h"
Performs one of the matrix-vector operations y = α*A*x + β*y
or y = α*A^T*x + β*y
, where α
and β
are scalars, x
and y
are vectors, and A
is an M
by N
matrix.
#include "stdlib/blas/base/shared.h"
double A[] = { 1.0, 0.0, 0.0, 2.0, 1.0, 0.0, 3.0, 2.0, 1.0 };
const double x[] = { 1.0, 2.0, 3.0 };
const double y[] = { 1.0, 2.0, 3.0 };
c_dgemv( CblasColMajor, CblasNoTrans, 3, 3, 1.0, A, 3, x, 1, 1.0, y, 1 );
The function accepts the following arguments:
- order:
[in] CBLAS_LAYOUT
storage layout. - trans:
[in] CBLAS_TRANSPOSE
specifies whetherA
should be transposed, conjugate-transposed, or not transposed. - M:
[in] CBLAS_INT
number of rows in the matrixA
. - N:
[in] CBLAS_INT
number of columns in the matrixA
. - alpha:
[in] double
scalar. - A:
[inout] double*
input matrix. - LDA:
[in] CBLAS_INT
stride of the first dimension ofA
(a.k.a., leading dimension of the matrixA
). - X:
[in] double*
first input vector. - strideX:
[in] CBLAS_INT
index increment forX
. - beta:
[in] double
scalar. - Y:
[in] double*
second input vector. - strideY:
[in] CBLAS_INT
index increment forY
.
void c_dgemv( const CBLAS_LAYOUT order, const CBLAS_TRANSPOSE trans, const CBLAS_INT M, const CBLAS_INT N, const double alpha, const double *A, const CBLAS_INT LDA, const double *x, const CBLAS_INT strideX, const double beta, double *y, const CBLAS_INT strideY )
c_dgemv_ndarray( trans, M, N, alpha, *A, strideA1, strideA2, offsetA, *X, strideX, offsetX, beta, *Y, strideY, offsetY )
Performs one of the matrix-vector operations y = α*A*x + β*y
or y = α*A^T*x + β*y
, where α
and β
are scalars, x
and y
are vectors, and A
is an M
by N
matrix using indexing alternative semantics.
#include "stdlib/blas/base/shared.h"
double A[] = { 1.0, 0.0, 0.0, 2.0, 1.0, 0.0, 3.0, 2.0, 1.0 };
const double x[] = { 1.0, 2.0, 3.0 };
const double y[] = { 1.0, 2.0, 3.0 };
c_dgemv_ndarray( CblasNoTrans, 3, 3, 1.0, A, 1, 3, 0, x, 1, 0, 1.0, y, 1, 0 );
The function accepts the following arguments:
- trans:
[in] CBLAS_TRANSPOSE
specifies whetherA
should be transposed, conjugate-transposed, or not transposed. - M:
[in] CBLAS_INT
number of rows in the matrixA
. - N:
[in] CBLAS_INT
number of columns in the matrixA
. - alpha:
[in] double
scalar. - A:
[inout] double*
input matrix. - strideA1:
[in] CBLAS_INT
stride of the first dimension ofA
. - strideA2:
[in] CBLAS_INT
stride of the second dimension ofA
. - offsetA:
[in] CBLAS_INT
starting index forA
. - X:
[in] double*
first input vector. - strideX:
[in] CBLAS_INT
index increment forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - beta:
[in] double
scalar. - Y:
[in] double*
second input vector. - strideY:
[in] CBLAS_INT
index increment forY
. - offsetY:
[in] CBLAS_INT
starting index forY
.
void c_dgemv_ndarray( const CBLAS_TRANSPOSE trans, const CBLAS_INT M, const CBLAS_INT N, const double alpha, const double *A, const CBLAS_INT strideA1, const CBLAS_INT strideA2, const CBLAS_INT offsetA, const double *x, const CBLAS_INT strideX, const CBLAS_INT offsetX, const double beta, double *y, const CBLAS_INT strideY, const CBLAS_INT offsetY )
#include "stdlib/blas/base/dgemv.h"
#include "stdlib/blas/base/shared.h"
#include <stdio.h>
int main( void ) {
// Create a strided array:
const double A[] = { 1.0, 0.0, 0.0, 2.0, 1.0, 0.0, 3.0, 2.0, 1.0 };
const double x[] = { 1.0, 2.0, 3.0 };
double y[] = { 1.0, 2.0, 3.0 };
// Specify the number of elements along each dimension of `A`:
const int M = 3;
const int N = 3;
// Perform the matrix-vector operations `y = α*A*x + β*y`:
c_dgemv( CblasRowMajor, CblasNoTrans, M, N, 1.0, A, M, x, 1, 1.0, y, 1 );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "y[ %i ] = %lf\n", i, y[ i ] );
}
// Perform the symmetric rank 2 operation `A = α*x*y^T + α*y*x^T + A`:
c_dgemv_ndarray( CblasNoTrans, 3, 3, 1.0, A, 3, 1, 0, x, 1, 0, 1.0, y, 1, 0 );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "y[ %i ] = %lf\n", i, y[ i ] );
}
}