Skip to content

Commit 77457b2

Browse files
authored
Prepare release linfa-nn 0.7.2 (#395)
* Bump linfa-nn version to 0.7.2 * Linting clippy::uninlined_format_args * Disable bench as dataset link is broken
1 parent 20b1dd2 commit 77457b2

File tree

38 files changed

+68
-78
lines changed

38 files changed

+68
-78
lines changed

algorithms/linfa-bayes/examples/winequality_bayes.rs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ fn main() -> Result<()> {
2222
// good | 7 | 10
2323
//
2424
// accuracy 0.8805031, MCC 0.45080978
25-
println!("{:?}", cm);
25+
println!("{cm:?}");
2626
println!("accuracy {}, MCC {}", cm.accuracy(), cm.mcc());
2727

2828
Ok(())

algorithms/linfa-bayes/examples/winequality_bernouilli.rs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ fn main() -> Result<()> {
2121
// good | 17 | 0
2222

2323
// accuracy 0.8930818, MCC
24-
println!("{:?}", cm);
24+
println!("{cm:?}");
2525
println!("accuracy {}, MCC {}", cm.accuracy(), cm.mcc());
2626

2727
Ok(())

algorithms/linfa-bayes/examples/winequality_multinomial.rs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ fn main() -> Result<()> {
2121
// good | 10 | 7
2222

2323
// accuracy 0.5974843, MCC 0.02000631
24-
println!("{:?}", cm);
24+
println!("{cm:?}");
2525
println!("accuracy {}, MCC {}", cm.accuracy(), cm.mcc());
2626

2727
Ok(())

algorithms/linfa-clustering/Cargo.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ space = "0.12"
4646
thiserror = "1.0"
4747
#partitions = "0.2.4" This one will break in a future version of Rust and has no replacement
4848
linfa = { version = "0.7.1", path = "../.." }
49-
linfa-nn = { version = "0.7.1", path = "../linfa-nn" }
49+
linfa-nn = { version = "0.7.2", path = "../linfa-nn" }
5050
noisy_float = "0.2.0"
5151

5252
[dev-dependencies]

algorithms/linfa-clustering/benches/k_means.rs

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ fn k_means_bench(c: &mut Criterion) {
5050
let mut stats = Stats::default();
5151

5252
benchmark.bench_function(
53-
BenchmarkId::new("naive_k_means", format!("{}x{}", n_clusters, cluster_size)),
53+
BenchmarkId::new("naive_k_means", format!("{n_clusters}x{cluster_size}")),
5454
|bencher| {
5555
bencher.iter(|| {
5656
let m = KMeans::params_with_rng(black_box(n_clusters), black_box(rng.clone()))
@@ -88,7 +88,7 @@ fn k_means_incr_bench(c: &mut Criterion) {
8888
benchmark.bench_function(
8989
BenchmarkId::new(
9090
"incremental_k_means",
91-
format!("{}x{}", n_clusters, cluster_size),
91+
format!("{n_clusters}x{cluster_size}"),
9292
),
9393
|bencher| {
9494
bencher.iter(|| {
@@ -140,7 +140,7 @@ fn k_means_init_bench(c: &mut Criterion) {
140140
benchmark.bench_function(
141141
BenchmarkId::new(
142142
"k_means_init",
143-
format!("{:?}:{}x{}", init, n_clusters, cluster_size),
143+
format!("{init:?}:{n_clusters}x{cluster_size}"),
144144
),
145145
|bencher| {
146146
bencher.iter(|| {

algorithms/linfa-clustering/examples/dbscan.rs

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -41,15 +41,15 @@ fn main() {
4141
println!("Result: ");
4242
for (label, count) in label_count {
4343
match label {
44-
None => println!(" - {} noise points", count),
45-
Some(i) => println!(" - {} points in cluster {}", count, i),
44+
None => println!(" - {count} noise points"),
45+
Some(i) => println!(" - {count} points in cluster {i}"),
4646
}
4747
}
4848
println!();
4949

5050
let silhouette_score = cluster_memberships.silhouette_score().unwrap();
5151

52-
println!("Silhouette score: {}", silhouette_score);
52+
println!("Silhouette score: {silhouette_score}");
5353

5454
let (records, cluster_memberships) = (cluster_memberships.records, cluster_memberships.targets);
5555

algorithms/linfa-clustering/examples/optics.rs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ fn main() {
3535
println!();
3636
println!("Result: ");
3737
for sample in analysis.iter() {
38-
println!("{:?}", sample);
38+
println!("{sample:?}");
3939
}
4040
println!();
4141

algorithms/linfa-elasticnet/examples/elasticnet_cv.rs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ fn main() -> Result<()> {
1919
dataset.cross_validate_single(5, &models, |prediction, truth| prediction.r2(&truth))?;
2020

2121
for (ratio, r2) in ratios.iter().zip(r2_values.iter()) {
22-
println!("L1 ratio: {}, r2 score: {}", ratio, r2);
22+
println!("L1 ratio: {ratio}, r2 score: {r2}");
2323
}
2424

2525
Ok(())

algorithms/linfa-ensemble/examples/bagging_iris.rs

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -25,11 +25,11 @@ fn main() {
2525

2626
// Return highest ranking predictions
2727
let final_predictions_ensemble = model.predict(&test);
28-
println!("Final Predictions: \n{:?}", final_predictions_ensemble);
28+
println!("Final Predictions: \n{final_predictions_ensemble:?}");
2929

3030
let cm = final_predictions_ensemble.confusion_matrix(&test).unwrap();
3131

32-
println!("{:?}", cm);
33-
println!("Test accuracy: {} \n with default Decision Tree params, \n Ensemble Size: {},\n Bootstrap Proportion: {}",
34-
100.0 * cm.accuracy(), ensemble_size, bootstrap_proportion);
32+
println!("{cm:?}");
33+
println!("Test accuracy: {} \n with default Decision Tree params, \n Ensemble Size: {ensemble_size},\n Bootstrap Proportion: {bootstrap_proportion}",
34+
100.0 * cm.accuracy());
3535
}

algorithms/linfa-ftrl/benches/ftrl.rs

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ fn fit_without_prior_model(c: &mut Criterion) {
2121
for (nfeatures, nrows) in sizes.iter() {
2222
let dataset = get_dataset(&mut rng, *nrows, *nfeatures);
2323
group.bench_function(
24-
BenchmarkId::new("training on ", format!("dataset {}x{}", nfeatures, nrows)),
24+
BenchmarkId::new("training on ", format!("dataset {nfeatures}x{nrows}")),
2525
|bencher| {
2626
bencher.iter(|| {
2727
params.fit_with(None, black_box(&dataset)).unwrap();
@@ -46,7 +46,7 @@ fn fit_with_prior_model(c: &mut Criterion) {
4646
let model = Ftrl::new(valid_params.clone(), *nfeatures);
4747
let dataset = get_dataset(&mut rng, *nrows, *nfeatures);
4848
group.bench_function(
49-
BenchmarkId::new("training on ", format!("dataset {}x{}", nfeatures, nrows)),
49+
BenchmarkId::new("training on ", format!("dataset {nfeatures}x{nrows}")),
5050
|bencher| {
5151
bencher.iter(|| {
5252
let _ = params
@@ -72,7 +72,7 @@ fn predict(c: &mut Criterion) {
7272
let model = Ftrl::new(valid_params.clone(), *nfeatures);
7373
let dataset = get_dataset(&mut rng, *nrows, *nfeatures);
7474
group.bench_function(
75-
BenchmarkId::new("predicting on ", format!("dataset {}x{}", nfeatures, nrows)),
75+
BenchmarkId::new("predicting on ", format!("dataset {nfeatures}x{nrows}")),
7676
|bencher| {
7777
bencher.iter(|| {
7878
model.predict(black_box(&dataset));

0 commit comments

Comments
 (0)