|
| 1 | +//By Sathish Kumar S, ECE |
| 2 | +#include <stdio.h> |
| 3 | +#include <stdlib.h> |
| 4 | + |
| 5 | +#define ARRAY_SIZE(arr) sizeof(arr)/sizeof(arr[0]) |
| 6 | + |
| 7 | +/* just add elements to test */ |
| 8 | +/* NOTE: A sorted array results in skewed tree */ |
| 9 | +int ele[] = { 20, 8, 22, 4, 12, 10, 14 }; |
| 10 | + |
| 11 | +/* same alias */ |
| 12 | +typedef struct node_t node_t; |
| 13 | + |
| 14 | +/* Binary tree node */ |
| 15 | +struct node_t |
| 16 | +{ |
| 17 | + int data; |
| 18 | + |
| 19 | + node_t* left; |
| 20 | + node_t* right; |
| 21 | +}; |
| 22 | + |
| 23 | +/* simple stack that stores node addresses */ |
| 24 | +typedef struct stack_t stack_t; |
| 25 | + |
| 26 | +/* initial element always NULL, uses as sentinal */ |
| 27 | +struct stack_t |
| 28 | +{ |
| 29 | + node_t* base[ARRAY_SIZE(ele) + 1]; |
| 30 | + int stackIndex; |
| 31 | +}; |
| 32 | + |
| 33 | +/* pop operation of stack */ |
| 34 | +node_t *pop(stack_t *st) |
| 35 | +{ |
| 36 | + node_t *ret = NULL; |
| 37 | + |
| 38 | + if( st && st->stackIndex > 0 ) |
| 39 | + { |
| 40 | + ret = st->base[st->stackIndex]; |
| 41 | + st->stackIndex--; |
| 42 | + } |
| 43 | + |
| 44 | + return ret; |
| 45 | +} |
| 46 | + |
| 47 | +/* push operation of stack */ |
| 48 | +void push(stack_t *st, node_t *node) |
| 49 | +{ |
| 50 | + if( st ) |
| 51 | + { |
| 52 | + st->stackIndex++; |
| 53 | + st->base[st->stackIndex] = node; |
| 54 | + } |
| 55 | +} |
| 56 | + |
| 57 | +/* Iterative insertion |
| 58 | + Recursion is least preferred unless we gain something |
| 59 | +*/ |
| 60 | +node_t *insert_node(node_t *root, node_t* node) |
| 61 | +{ |
| 62 | + /* A crawling pointer */ |
| 63 | + node_t *pTraverse = root; |
| 64 | + node_t *currentParent = root; |
| 65 | + |
| 66 | + // Traverse till appropriate node |
| 67 | + while(pTraverse) |
| 68 | + { |
| 69 | + currentParent = pTraverse; |
| 70 | + |
| 71 | + if( node->data < pTraverse->data ) |
| 72 | + { |
| 73 | + /* left subtree */ |
| 74 | + pTraverse = pTraverse->left; |
| 75 | + } |
| 76 | + else |
| 77 | + { |
| 78 | + /* right subtree */ |
| 79 | + pTraverse = pTraverse->right; |
| 80 | + } |
| 81 | + } |
| 82 | + |
| 83 | + /* If the tree is empty, make it as root node */ |
| 84 | + if( !root ) |
| 85 | + { |
| 86 | + root = node; |
| 87 | + } |
| 88 | + else if( node->data < currentParent->data ) |
| 89 | + { |
| 90 | + /* Insert on left side */ |
| 91 | + currentParent->left = node; |
| 92 | + } |
| 93 | + else |
| 94 | + { |
| 95 | + /* Insert on right side */ |
| 96 | + currentParent->right = node; |
| 97 | + } |
| 98 | + |
| 99 | + return root; |
| 100 | +} |
| 101 | + |
| 102 | +/* Elements are in an array. The function builds binary tree */ |
| 103 | +node_t* binary_search_tree(node_t *root, int keys[], int const size) |
| 104 | +{ |
| 105 | + int iterator; |
| 106 | + node_t *new_node = NULL; |
| 107 | + |
| 108 | + for(iterator = 0; iterator < size; iterator++) |
| 109 | + { |
| 110 | + new_node = (node_t *)malloc( sizeof(node_t) ); |
| 111 | + |
| 112 | + /* initialize */ |
| 113 | + new_node->data = keys[iterator]; |
| 114 | + new_node->left = NULL; |
| 115 | + new_node->right = NULL; |
| 116 | + |
| 117 | + /* insert into BST */ |
| 118 | + root = insert_node(root, new_node); |
| 119 | + } |
| 120 | + |
| 121 | + return root; |
| 122 | +} |
| 123 | + |
| 124 | +node_t *k_smallest_element_inorder(stack_t *stack, node_t *root, int k) |
| 125 | +{ |
| 126 | + stack_t *st = stack; |
| 127 | + node_t *pCrawl = root; |
| 128 | + |
| 129 | + /* move to left extremen (minimum) */ |
| 130 | + while( pCrawl ) |
| 131 | + { |
| 132 | + push(st, pCrawl); |
| 133 | + pCrawl = pCrawl->left; |
| 134 | + } |
| 135 | + |
| 136 | + /* pop off stack and process each node */ |
| 137 | + while( pCrawl = pop(st) ) |
| 138 | + { |
| 139 | + /* each pop operation emits one element |
| 140 | + in the order |
| 141 | + */ |
| 142 | + if( !--k ) |
| 143 | + { |
| 144 | + /* loop testing */ |
| 145 | + st->stackIndex = 0; |
| 146 | + break; |
| 147 | + } |
| 148 | + |
| 149 | + /* there is right subtree */ |
| 150 | + if( pCrawl->right ) |
| 151 | + { |
| 152 | + /* push the left subtree of right subtree */ |
| 153 | + pCrawl = pCrawl->right; |
| 154 | + while( pCrawl ) |
| 155 | + { |
| 156 | + push(st, pCrawl); |
| 157 | + pCrawl = pCrawl->left; |
| 158 | + } |
| 159 | + |
| 160 | + /* pop off stack and repeat */ |
| 161 | + } |
| 162 | + } |
| 163 | + |
| 164 | + /* node having k-th element or NULL node */ |
| 165 | + return pCrawl; |
| 166 | +} |
| 167 | + |
| 168 | +/* Driver program to test above functions */ |
| 169 | +int main(void) |
| 170 | +{ |
| 171 | + node_t* root = NULL; |
| 172 | + stack_t stack = { {0}, 0 }; |
| 173 | + node_t *kNode = NULL; |
| 174 | + |
| 175 | + int k = 5; |
| 176 | + |
| 177 | + /* Creating the tree given in the above diagram */ |
| 178 | + root = binary_search_tree(root, ele, ARRAY_SIZE(ele)); |
| 179 | + |
| 180 | + kNode = k_smallest_element_inorder(&stack, root, k); |
| 181 | + |
| 182 | + if( kNode ) |
| 183 | + { |
| 184 | + printf("kth smallest elment for k = %d is %d", k, kNode->data); |
| 185 | + } |
| 186 | + else |
| 187 | + { |
| 188 | + printf("There is no such element"); |
| 189 | + } |
| 190 | + |
| 191 | + getchar(); |
| 192 | + return 0; |
| 193 | +} |
0 commit comments