|
| 1 | +import numpy as np |
| 2 | +import tensorflow as tf |
| 3 | +import keras.backend as k |
| 4 | +from keras.models import Sequential |
| 5 | +from keras.layers import Dense |
| 6 | +from keras.activations import sigmoid |
| 7 | +from keras.losses import MSE |
| 8 | +from keras.optimizers import SGD |
| 9 | +from keras.metrics import binary_accuracy |
| 10 | +sess=tf.Session() |
| 11 | +k.set_session(sess) |
| 12 | + |
| 13 | +logicand=np.array([[0,0,0], |
| 14 | + [0,1,0], |
| 15 | + [1,0,0], |
| 16 | + [1,1,1]]) |
| 17 | + |
| 18 | + |
| 19 | +logicor=np.array([[0,0,0], |
| 20 | + [0,1,1], |
| 21 | + [1,0,1], |
| 22 | + [1,1,1]]) |
| 23 | + |
| 24 | +logicxor=np.array([[0,0,0], |
| 25 | + [0,1,1], |
| 26 | + [1,0,1], |
| 27 | + [1,1,0]]) |
| 28 | + |
| 29 | +logicnot=np.array([[0,1], |
| 30 | + [1,0]]) |
| 31 | +# x=logicand[:,:2] |
| 32 | +# y=logicand[:,-1] |
| 33 | + |
| 34 | +# x=logicor[:,:2] |
| 35 | +# y=logicor[:,-1] |
| 36 | + |
| 37 | +x=logicxor[:,:2] |
| 38 | +y=logicxor[:,-1] |
| 39 | + |
| 40 | +# x=logicnot[:,:1] |
| 41 | +# y=logicnot[:,-1] |
| 42 | + |
| 43 | + |
| 44 | + |
| 45 | +model = Sequential() |
| 46 | +model.add(Dense(2,activation=sigmoid,input_dim=2)) |
| 47 | +model.add(Dense(1,activation=sigmoid)) |
| 48 | +model.compile(loss=MSE,optimizer=SGD(lr=1)) |
| 49 | +model.fit(x,y,epochs=1000) |
| 50 | +model.save("xorGates.h5") |
| 51 | +#print(model.predict(np.array([[,1]])))x |
| 52 | + |
| 53 | +# model = Sequential() |
| 54 | +# model.add(Dense(1,activation=sigmoid,input_dim=1)) |
| 55 | +# model.compile(loss=MSE,optimizer=SGD(lr=1)) |
| 56 | +# model.fit(x,y,epochs=10000) |
| 57 | +# model.save("notGAtes.h5") |
0 commit comments