|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | +# All rights reserved. |
| 4 | +# |
| 5 | +# This source code is licensed under the BSD-style license found in the |
| 6 | +# LICENSE file in the root directory of this source tree. |
| 7 | + |
| 8 | +import unittest |
| 9 | + |
| 10 | +import torch |
| 11 | + |
| 12 | +from torchrec.modules.embedding_configs import EmbeddingBagConfig |
| 13 | +from torchrec.modules.embedding_modules import EmbeddingBagCollection |
| 14 | +from torchrec.optim.apply_optimizer_in_backward import apply_optimizer_in_backward |
| 15 | +from torchrec.optim.optimizers import in_backward_optimizer_filter |
| 16 | + |
| 17 | + |
| 18 | +class TestInBackwardOptimizerFilter(unittest.TestCase): |
| 19 | + def test_in_backward_optimizer_filter(self) -> None: |
| 20 | + ebc = EmbeddingBagCollection( |
| 21 | + tables=[ |
| 22 | + EmbeddingBagConfig( |
| 23 | + name="t1", embedding_dim=4, num_embeddings=2, feature_names=["f1"] |
| 24 | + ), |
| 25 | + EmbeddingBagConfig( |
| 26 | + name="t2", embedding_dim=4, num_embeddings=2, feature_names=["f2"] |
| 27 | + ), |
| 28 | + ] |
| 29 | + ) |
| 30 | + apply_optimizer_in_backward( |
| 31 | + torch.optim.SGD, |
| 32 | + ebc.embedding_bags["t1"].parameters(), |
| 33 | + optimizer_kwargs={"lr": 1.0}, |
| 34 | + ) |
| 35 | + in_backward_params = dict( |
| 36 | + in_backward_optimizer_filter(ebc.named_parameters(), include=True) |
| 37 | + ) |
| 38 | + non_in_backward_params = dict( |
| 39 | + in_backward_optimizer_filter(ebc.named_parameters(), include=False) |
| 40 | + ) |
| 41 | + assert set(in_backward_params.keys()) == {"embedding_bags.t1.weight"} |
| 42 | + assert set(non_in_backward_params.keys()) == {"embedding_bags.t2.weight"} |
0 commit comments