Skip to content

Sampling fails when num_chains=1 #317

@tirthasheshpatel

Description

@tirthasheshpatel

While debugging #309, I found that sampling fails when num_chains=1 on the latest tensorflow nightly and tensorflow probability nightly. Here's a minimal reproducible example:

>>> import pymc4 as pm
>>> @pm.model
... def model():
...  x = yield pm.Normal("x", 0., 1.)
...  return x
...
>>> m = model()
>>> pm.sample(m, num_chains=1, num_samples=10, burn_in=10)

Error:

Auto-assigning NUTS sampler
Traceback (most recent call last):
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\util\nest.py", line 403, in assert_same_structure
    _pywrap_utils.AssertSameStructure(nest1, nest2, check_types,
ValueError: The two structures don't have the same nested structure.

First structure: type=list str=[<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/add:0' shape=() dtype=int32>, [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/add_1:0' shape=(1,) dtype=float32>], [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/add:0' shape=(1,) dtype=float32>], <tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/pfor/Tile:0' shape=(1,) dtype=float32>, [<tensorflow.python.framework.indexed_slices.IndexedSlices object at 0x000001E28DA833D0>]]

Second structure: type=list str=[<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/iter:0' shape=() dtype=int32>, [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/add:0' shape=(1,) dtype=float32>], [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/Placeholder_6:0' shape=(1,) dtype=float32>], <tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/Placeholder_7:0' shape=(1,) dtype=float32>, [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/Placeholder_8:0' shape=(1,) dtype=float32>]]

More specifically: Substructure "type=IndexedSlices str=IndexedSlices(indices=Tensor("mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/gradients/mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/loop_body/GatherV2_grad/Reshape_1:0", shape=(1,), dtype=int32), values=Tensor("mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/gradients/mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/loop_body/GatherV2_grad/Reshape:0", shape=(1,), dtype=float32), dense_shape=Tensor("mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/gradients/mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/loop_body/GatherV2_grad/Cast:0", shape=(1,), dtype=int32))" is a sequence, while substructure "type=Tensor str=Tensor("mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/Placeholder_8:0", shape=(1,), dtype=float32)" is not

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\pymc4\inference\sampling.py", line 168, in sample
    return sampler(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\pymc4\mcmc\samplers.py", line 225, in __call__
    return self._sample(*args, **kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\pymc4\mcmc\samplers.py", line 132, in _sample
    results, sample_stats = self._run_chains(init_state, burn_in)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\eager\def_function.py", line 786, in __call__
    result = self._call(*args, **kwds)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\eager\def_function.py", line 829, in _call
    self._initialize(args, kwds, add_initializers_to=initializers)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\eager\def_function.py", line 716, in _initialize
    self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\eager\function.py", line 2955, in _get_concrete_function_internal_garbage_collected
    graph_function, _ = self._maybe_define_function(args, kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\eager\function.py", line 3351, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\eager\function.py", line 3190, in _create_graph_function
    func_graph_module.func_graph_from_py_func(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 987, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\eager\def_function.py", line 625, in wrapped_fn
    out = weak_wrapped_fn().__wrapped__(*args, **kwds)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\eager\function.py", line 3875, in bound_method_wrapper
    return wrapped_fn(weak_instance(), *args, **kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\pymc4\mcmc\samplers.py", line 172, in _run_chains
    results, sample_stats = mcmc.sample_chain(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\sample.py", line 361, in sample_chain
    (_, _, final_kernel_results), (all_states, trace) = mcmc_util.trace_scan(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\internal\util.py", line 460, in trace_scan
    _, final_state, _, trace_arrays = tf.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\util\deprecation.py", line 574, in new_func
    return func(*args, **kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2489, in while_loop_v2
    return while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2687, in while_loop
    return while_v2.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 188, in while_loop
    body_graph = func_graph_module.func_graph_from_py_func(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 987, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 174, in wrapped_body
    outputs = body(*_pack_sequence_as(orig_loop_vars, args))
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\internal\util.py", line 450, in _body
    state = loop_fn(state, elem)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\sample.py", line 354, in _trace_scan_fn
    seed, next_state, current_kernel_results = mcmc_util.smart_for_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\internal\util.py", line 349, in smart_for_loop
    return tf.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\util\deprecation.py", line 574, in new_func
    return func(*args, **kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2489, in while_loop_v2
    return while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2687, in while_loop
    return while_v2.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 188, in while_loop
    body_graph = func_graph_module.func_graph_from_py_func(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 987, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 174, in wrapped_body
    outputs = body(*_pack_sequence_as(orig_loop_vars, args))
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\internal\util.py", line 351, in <lambda>
    body=lambda i, *args: [i + 1] + list(body_fn(*args)),
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\sample.py", line 351, in _seeded_one_step
    kernel.one_step(*state_and_results, **one_step_kwargs))
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\dual_averaging_step_size_adaptation.py", line 456, in one_step
    new_state, new_inner_results = self.inner_kernel.one_step(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\nuts.py", line 419, in one_step
    _, _, _, new_step_metastate = tf.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\util\deprecation.py", line 574, in new_func
    return func(*args, **kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2489, in while_loop_v2
    return while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2687, in while_loop
    return while_v2.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 188, in while_loop
    body_graph = func_graph_module.func_graph_from_py_func(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 987, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 174, in wrapped_body
    outputs = body(*_pack_sequence_as(orig_loop_vars, args))
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\nuts.py", line 423, in <lambda>
    body=lambda iter_, seed, state, metastate: self._loop_tree_doubling(  # pylint: disable=g-long-lambda
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\nuts.py", line 597, in _loop_tree_doubling
    ] = self._build_sub_tree(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\nuts.py", line 777, in _build_sub_tree
    ] = tf.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\util\deprecation.py", line 574, in new_func
    return func(*args, **kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2489, in while_loop_v2
    return while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2687, in while_loop
    return while_v2.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 188, in while_loop
    body_graph = func_graph_module.func_graph_from_py_func(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 987, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 174, in wrapped_body
    outputs = body(*_pack_sequence_as(orig_loop_vars, args))
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\nuts.py", line 785, in <lambda>
    self._loop_build_sub_tree(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\nuts.py", line 838, in _loop_build_sub_tree
    ] = integrator(prev_tree_state.momentum,
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow_probability\python\mcmc\internal\leapfrog_integrator.py", line 282, in __call__
    ] = tf.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\util\deprecation.py", line 574, in new_func
    return func(*args, **kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2489, in while_loop_v2
    return while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 2687, in while_loop
    return while_v2.while_loop(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 188, in while_loop
    body_graph = func_graph_module.func_graph_from_py_func(
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 987, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\ops\while_v2.py", line 179, in wrapped_body
    nest.assert_same_structure(list(outputs), list(orig_loop_vars),
  File "C:\Users\tirth\Desktop\INTERESTS\PyMC4\env\lib\site-packages\tensorflow\python\util\nest.py", line 408, in assert_same_structure
    raise type(e)("%s\n"
ValueError: The two structures don't have the same nested structure.

First structure: type=list str=[<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/add:0' shape=() dtype=int32>, [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/add_1:0' shape=(1,) dtype=float32>], [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/add:0' shape=(1,) dtype=float32>], <tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/pfor/Tile:0' shape=(1,) dtype=float32>, [<tensorflow.python.framework.indexed_slices.IndexedSlices object at 0x000001E28DA833D0>]]

Second structure: type=list str=[<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/iter:0' shape=() dtype=int32>, [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/add:0' shape=(1,) dtype=float32>], [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/Placeholder_6:0' shape=(1,) dtype=float32>], <tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/Placeholder_7:0' shape=(1,) dtype=float32>, [<tf.Tensor 'mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/Placeholder_8:0' shape=(1,) dtype=float32>]]

More specifically: Substructure "type=IndexedSlices str=IndexedSlices(indices=Tensor("mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/gradients/mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/loop_body/GatherV2_grad/Reshape_1:0", shape=(1,), dtype=int32), values=Tensor("mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/gradients/mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/loop_body/GatherV2_grad/Reshape:0", shape=(1,), dtype=float32), dense_shape=Tensor("mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/gradients/mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/loop_build_sub_tree/leapfrog_integrate/while/leapfrog_integrate_one_step/maybe_call_fn_and_grads/value_and_gradients/value_and_gradient/loop_body/GatherV2_grad/Cast:0", shape=(1,), dtype=int32))" is a sequence, while substructure "type=Tensor str=Tensor("mcmc_sample_chain/trace_scan/while/smart_for_loop/while/dual_averaging_step_size_adaptation___init__/_one_step/NoUTurnSampler/.one_step/while/loop_tree_doubling/build_sub_tree/while/Placeholder_8:0", shape=(1,), dtype=float32)" is not
Entire first structure:
[., [.], [.], ., [.]]
Entire second structure:
[., [.], [.], ., [.]]

Versions

  • Tensorflow Nightly : 2.4.0-dev20200828
  • Tensorflow probability Nightly : 0.12.0-dev20200830
  • Numpy : 1.19.0

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions