@@ -128,7 +128,8 @@ Data Analysis and Visualization Capstone project from Data Science and Machine L
128
128
+ Scikit-learn - Creating Machine Learning Models
129
129
130
130
131
- ## [ Data Science and Machine Learning Bootcamp (in progress)] ( Data%20Science%20and%20Machine%20Learning%20Bootcamp%20-%20JP )
131
+ ## [ Data Science and Machine Learning Bootcamp] ( Data%20Science%20and%20Machine%20Learning%20Bootcamp%20-%20JP )
132
+ + changed and continued in the new track of 2021 Python for Machine Learning & Data Science Masterclass
132
133
+ Python Crash Course
133
134
+ Python for Data Analysis - NumPy
134
135
+ Python for Data Analysis - Pandas
@@ -139,7 +140,18 @@ Data Analysis and Visualization Capstone project from Data Science and Machine L
139
140
+ Data Capstone Projects
140
141
+ 911 Calls Project
141
142
142
-
143
+
144
+ # Advancing Machine Learning & Data Science Journey - (In Progress)
145
+
146
+ ## [ Applied Machine Learning - Algorithms] ( ML%20-%20Applied%20Machine%20Learning%20-%20Algorithms )
147
+ + Project: Titanic dataset
148
+ + 01.Review of Foundation
149
+ + 02.Logistic Regression
150
+ + 03.Support Vector Machine
151
+ + 04.Multi-layer Perceptron
152
+ + 05.Random Forest
153
+ + 06.Boosting
154
+
143
155
## [ Applied Machine Learning - Foundation] ( ML%20-%20Applied%20Machine%20Learning%20Foundation )
144
156
+ Project: Titanic dataset
145
157
+ 01.ML Basic
@@ -161,32 +173,30 @@ Data Analysis and Visualization Capstone project from Data Science and Machine L
161
173
+ Excel Data Manipulation, Analysis and Visualization
162
174
163
175
164
- ## [ More Python Data Tools - Microsoft] ( More%20Python%20Data%20Tools%20-%20Microsoft )
165
- + Examining and Querying Pandas Data Frame
166
- + Reading and Writing CSV files from Pandas Data Frame
167
- + Removing and splitting DataFrame columns
168
- + Handling duplicates and rows with missing values
169
- + Splitting test and training data with scikit-learn
170
- + Train a linear regression model with scikit-learn
171
- + Testing a model
172
- + Evaluating accuracy of a model using calculations
173
- + NumPy vs Pandas
174
- + Visualizing data with Matplotlib
175
-
176
-
177
176
## [ Python Data Playbook - Cleaning Data] ( Python%20Data%20Playbook%20-%20Cleaning%20Data )
178
177
+ 01.Understanding the data - Art Works Analysis
179
178
+ 02.Removing and Fixing Columns with pandas - Art Works Analysis
180
179
+ 03.Indexing and Filtering datasets - Art Works Analysis
181
180
+ 04.Handling Bad Missing Data - Art Works Analysis
182
181
183
-
184
182
## [ Pandas Playbook - Manipulating Data] ( Pandas%20Playbook%20-%20Manipulating%20Data )
185
183
+ 01.Exporing Data
186
184
+ 02.Selecting, Filtering and Sorting Data
187
185
+ 03.Cleaning Data
188
186
+ 04.Transforming Data
189
187
188
+ ## [ More Python Data Tools - Microsoft] ( More%20Python%20Data%20Tools%20-%20Microsoft )
189
+ + Examining and Querying Pandas Data Frame
190
+ + Reading and Writing CSV files from Pandas Data Frame
191
+ + Removing and splitting DataFrame columns
192
+ + Handling duplicates and rows with missing values
193
+ + Splitting test and training data with scikit-learn
194
+ + Train a linear regression model with scikit-learn
195
+ + Testing a model
196
+ + Evaluating accuracy of a model using calculations
197
+ + NumPy vs Pandas
198
+ + Visualizing data with Matplotlib
199
+
190
200
191
201
## [ Data Science Math Skills - Duke University] ( https://www.coursera.org/learn/datasciencemathskills )
192
202
Topics include:
0 commit comments