|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "## Summary: Compare model results and final model selection\n", |
| 8 | + "\n", |
| 9 | + "Using the Titanic dataset from [this](https://www.kaggle.com/c/titanic/overview) Kaggle competition.\n", |
| 10 | + "\n", |
| 11 | + "In this section, we will do the following:\n", |
| 12 | + "1. Evaluate all of our saved models on the validation set\n", |
| 13 | + "2. Select the best model based on performance on the validation set\n", |
| 14 | + "3. Evaluate that model on the holdout test set" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "### Read in Data" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": 8, |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "import joblib\n", |
| 31 | + "import pandas as pd\n", |
| 32 | + "from sklearn.metrics import accuracy_score, precision_score, recall_score\n", |
| 33 | + "from time import time\n", |
| 34 | + "\n", |
| 35 | + "val_features = pd.read_csv('../Data/val_features.csv')\n", |
| 36 | + "val_labels = pd.read_csv('../Data/val_labels.csv', header=None)\n", |
| 37 | + "\n", |
| 38 | + "test_features = pd.read_csv('../Data/test_features.csv')\n", |
| 39 | + "test_labels = pd.read_csv('../Data/test_labels.csv', header=None)" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "### Read in Models" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": 9, |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "models = {}\n", |
| 56 | + "for mdl in ['LR', 'SVM', 'MLP', 'RF', 'GB']:\n", |
| 57 | + " models[mdl] = joblib.load('../Pickled_Models/{}_model.pkl'.format(mdl))" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": 10, |
| 63 | + "metadata": {}, |
| 64 | + "outputs": [ |
| 65 | + { |
| 66 | + "data": { |
| 67 | + "text/plain": [ |
| 68 | + "{'LR': LogisticRegression(C=1, max_iter=1000),\n", |
| 69 | + " 'SVM': SVC(C=0.1, kernel='linear'),\n", |
| 70 | + " 'MLP': MLPClassifier(activation='tanh', hidden_layer_sizes=(10,), max_iter=1000),\n", |
| 71 | + " 'RF': RandomForestClassifier(max_depth=4, n_estimators=250),\n", |
| 72 | + " 'GB': GradientBoostingClassifier(learning_rate=0.01, n_estimators=500)}" |
| 73 | + ] |
| 74 | + }, |
| 75 | + "execution_count": 10, |
| 76 | + "metadata": {}, |
| 77 | + "output_type": "execute_result" |
| 78 | + } |
| 79 | + ], |
| 80 | + "source": [ |
| 81 | + "models" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "markdown", |
| 86 | + "metadata": {}, |
| 87 | + "source": [ |
| 88 | + "### Evaluate models on the validation set\n", |
| 89 | + "\n", |
| 90 | + "" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "code", |
| 95 | + "execution_count": 20, |
| 96 | + "metadata": {}, |
| 97 | + "outputs": [], |
| 98 | + "source": [ |
| 99 | + "def evaluate_model(name, model, features, labels):\n", |
| 100 | + " start = time()\n", |
| 101 | + " pred = model.predict(features)\n", |
| 102 | + " end = time()\n", |
| 103 | + " \n", |
| 104 | + " accuracy = round(accuracy_score(labels, pred), 3) \n", |
| 105 | + " precision = round(precision_score(labels, pred), 3)\n", |
| 106 | + " recall = round(recall_score(labels, pred), 3)\n", |
| 107 | + " \n", |
| 108 | + " print('{} -- Accuracy: {} / Precision: {} / Recall: {} / Latency: {}ms'.format(name,\n", |
| 109 | + " accuracy,\n", |
| 110 | + " precision,\n", |
| 111 | + " recall,\n", |
| 112 | + " round((end - start)*1000, 1)))" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "code", |
| 117 | + "execution_count": 21, |
| 118 | + "metadata": {}, |
| 119 | + "outputs": [ |
| 120 | + { |
| 121 | + "name": "stdout", |
| 122 | + "output_type": "stream", |
| 123 | + "text": [ |
| 124 | + "LR -- Accuracy: 0.775 / Precision: 0.712 / Recall: 0.646 / Latency: 3.0ms\n", |
| 125 | + "SVM -- Accuracy: 0.747 / Precision: 0.672 / Recall: 0.6 / Latency: 5.0ms\n", |
| 126 | + "MLP -- Accuracy: 0.781 / Precision: 0.724 / Recall: 0.646 / Latency: 3.0ms\n", |
| 127 | + "RF -- Accuracy: 0.809 / Precision: 0.83 / Recall: 0.6 / Latency: 38.0ms\n", |
| 128 | + "GB -- Accuracy: 0.815 / Precision: 0.808 / Recall: 0.646 / Latency: 6.0ms\n" |
| 129 | + ] |
| 130 | + } |
| 131 | + ], |
| 132 | + "source": [ |
| 133 | + "# validation set\n", |
| 134 | + "for name, mdl in models.items():\n", |
| 135 | + " evaluate_model(name, mdl, val_features, val_labels)" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "markdown", |
| 140 | + "metadata": {}, |
| 141 | + "source": [ |
| 142 | + "### Evaluate best model on test set" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": 24, |
| 148 | + "metadata": {}, |
| 149 | + "outputs": [ |
| 150 | + { |
| 151 | + "name": "stdout", |
| 152 | + "output_type": "stream", |
| 153 | + "text": [ |
| 154 | + "Random Forest -- Accuracy: 0.799 / Precision: 0.845 / Recall: 0.645 / Latency: 48.0ms\n" |
| 155 | + ] |
| 156 | + } |
| 157 | + ], |
| 158 | + "source": [ |
| 159 | + "# test set\n", |
| 160 | + "evaluate_model('Random Forest', models['RF'], test_features, test_labels)" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": 25, |
| 166 | + "metadata": {}, |
| 167 | + "outputs": [ |
| 168 | + { |
| 169 | + "name": "stdout", |
| 170 | + "output_type": "stream", |
| 171 | + "text": [ |
| 172 | + "Gradient Boosting -- Accuracy: 0.816 / Precision: 0.852 / Recall: 0.684 / Latency: 6.0ms\n" |
| 173 | + ] |
| 174 | + } |
| 175 | + ], |
| 176 | + "source": [ |
| 177 | + "# test set\n", |
| 178 | + "evaluate_model('Gradient Boosting', models['GB'], test_features, test_labels)" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": null, |
| 184 | + "metadata": {}, |
| 185 | + "outputs": [], |
| 186 | + "source": [] |
| 187 | + } |
| 188 | + ], |
| 189 | + "metadata": { |
| 190 | + "kernelspec": { |
| 191 | + "display_name": "Python 3", |
| 192 | + "language": "python", |
| 193 | + "name": "python3" |
| 194 | + }, |
| 195 | + "language_info": { |
| 196 | + "codemirror_mode": { |
| 197 | + "name": "ipython", |
| 198 | + "version": 3 |
| 199 | + }, |
| 200 | + "file_extension": ".py", |
| 201 | + "mimetype": "text/x-python", |
| 202 | + "name": "python", |
| 203 | + "nbconvert_exporter": "python", |
| 204 | + "pygments_lexer": "ipython3", |
| 205 | + "version": "3.8.3" |
| 206 | + } |
| 207 | + }, |
| 208 | + "nbformat": 4, |
| 209 | + "nbformat_minor": 2 |
| 210 | +} |
0 commit comments