You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
importscipyimportpandasaspdcoo=scipy.sparse.coo_matrix([[False,True],[True,False]])
pd.DataFrame.sparse.from_spmatrix(coo) # results in FutureWarningcoo=scipy.sparse.coo_matrix([[0,1],[1,0]])
pd.DataFrame.sparse.from_spmatrix(coo) # no warnings
Issue Description
Attempting to use from_spmatrix() with a boolean-type scipy.sparse matrix raises a warning about arbitrary scalar fill_value:
FutureWarning: Allowing arbitrary scalar fill_value in SparseDtype is deprecated. In a future version, the fill_value must be a valid value for the SparseDtype.subtype.
pd.DataFrame.sparse.from_spmatrix(coo)
but using sparse integer dtype for the scipy matrix does not. I don't understand why this occurs, but it seems like from_spmatrix should be able to handle both of these scenarios. Also, there is no argument to from_spmatrix to specify a type, so it is unclear what the user should do about this future warning if anything.
Expected Behavior
No warning, uses dtype matching input
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.9.13.final.0
python-bits : 64
OS : Darwin
OS-release : 21.6.0
Version : Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
avoids FutureWarnings when creating Pandas dfs from scipy sparse matrix types, but also seems like unnecessary memory use, consider reverting to bool pending info on this issue: pandas-dev/pandas#59739
Thanks for the report, the result appears correct on main where the warning has been removed. This warning should not be surfaced to the user. Further investigations and PRs to fix are welcome!
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
Attempting to use from_spmatrix() with a boolean-type scipy.sparse matrix raises a warning about arbitrary scalar fill_value:
but using sparse integer dtype for the scipy matrix does not. I don't understand why this occurs, but it seems like from_spmatrix should be able to handle both of these scenarios. Also, there is no argument to from_spmatrix to specify a type, so it is unclear what the user should do about this future warning if anything.
Expected Behavior
No warning, uses dtype matching input
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.9.13.final.0
python-bits : 64
OS : Darwin
OS-release : 21.6.0
Version : Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 70.1.0
pip : 22.1.2
Cython : None
pytest : 8.2.2
hypothesis : None
sphinx : 7.3.7
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.1.4
IPython : 8.18.1
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.6.0
gcsfs : None
matplotlib : 3.9.0
numba : 0.60.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.13.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: