Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
the whole df usually has got >10 rows x 49 columns
`df = pd.DataFrame.from_dict(dictionary)`
`df = df.astype(DF_DTYPES)` where this particular column is defined `{'is_inco_oper': int}`
Issue Description
original df is int64
converted to int32
, and values are mutated in row 7-9
0 170914000
1 63275000
2 248049000
3 746273000
4 1067817000
5 1022510000
6 1218091000
7 3415195000
8 3669382000
9 2531232000
Name: is_inco_oper, dtype: int64
0 170914000
1 63275000
2 248049000
3 746273000
4 1067817000
5 1022510000
6 1218091000
7 -879772296
8 -625585296
9 -1763735296
Name: is_inco_oper, dtype: int32
Expected Behavior
keep the original values
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.12.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19045
machine : AMD64
processor : AMD64 Family 25 Model 33 Stepping 0, AuthenticAMD
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_Switzerland.1252
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 70.0.0
pip : 24.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.3
IPython : 8.24.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.8.4
numba : 0.59.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.13.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None