Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
series_1 = pd.Series([-1] + ([1] * 19))
print(series_1.kurt())
print(series_1.rolling(20).kurt().max())
series_2 = pd.Series(([-1] * 7) + ([1] * 19))
print(series_2.rolling(20).kurt().max())
series_3 = pd.Series(([-1] * 6) + ([1] * 19))
print(series_3.rolling(20).kurt().max())
Issue Description
I met a problem in calculating rolling kurtosis for a specific kind of data.
for series_1 = pd.Series([-1] + ([1] * 19))
, I checked the source code and expected its kurtosis to be 20.00000000000001
because of the binary rounding error. While this holds true for calculating series_1.kurt()
, the rolling version of it behaves oddly and returns an exact 20.0
.
The numerical inconsistency also exists when I create another series series_2 = pd.Series(([-1] * 7) + ([1] * 19))
. This time it returns 20.00000000000001
, which is not equal to the max rolling kurtosis of series_1
. However, series_3
would give a 20.0
.
You can create similar series like above to see different behaviors. What is the rationale of it? Why would pandas sometimes give a 20.0
?
Expected Behavior
Expected all results to be 20.00000000000001
.
Installed Versions
INSTALLED VERSIONS
commit : 0f43794
python : 3.11.5.final.0
python-bits : 64
OS : Darwin
OS-release : 23.4.0
Version : Darwin Kernel Version 23.4.0: Fri Mar 15 00:12:49 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T6020
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
pandas : 2.0.3
numpy : 1.24.3
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.2.1
Cython : None
pytest : 7.4.0
hypothesis : None
sphinx : 5.0.2
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.15.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : 1.3.5
brotli :
fastparquet : None
fsspec : 2023.4.0
gcsfs : None
matplotlib : 3.7.2
numba : 0.57.1
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2023.4.0
scipy : 1.11.1
snappy :
sqlalchemy : 1.4.39
tables : 3.8.0
tabulate : 0.8.10
xarray : 2023.6.0
xlrd : None
zstandard : 0.19.0
tzdata : 2023.3
qtpy : 2.2.0
pyqt5 : None