3
3
from string import ascii_lowercase
4
4
5
5
import numpy as np
6
- import pyarrow as pa
7
6
import pytest
8
7
9
8
from pandas ._libs .tslibs import iNaT
@@ -1057,27 +1056,11 @@ def scipy_sem(*args, **kwargs):
1057
1056
"sum" ,
1058
1057
Series (pd .array ([- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ], dtype = "Float64" )),
1059
1058
),
1060
- (
1061
- "sum" ,
1062
- Series (
1063
- pd .array (
1064
- [1.0 , 2.0 , 3.0 , np .nan , 4.0 , 5.0 ], dtype = pd .ArrowDtype (pa .float64 ())
1065
- )
1066
- ),
1067
- ),
1068
1059
("min" , [- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ]),
1069
1060
(
1070
1061
"min" ,
1071
1062
Series (pd .array ([- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ], dtype = "Float64" )),
1072
1063
),
1073
- (
1074
- "min" ,
1075
- Series (
1076
- pd .array (
1077
- [1.0 , 2.0 , 3.0 , np .nan , 4.0 , 5.0 ], dtype = pd .ArrowDtype (pa .float64 ())
1078
- )
1079
- ),
1080
- ),
1081
1064
(
1082
1065
"min" ,
1083
1066
[
@@ -1105,14 +1088,6 @@ def scipy_sem(*args, **kwargs):
1105
1088
"max" ,
1106
1089
Series (pd .array ([- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ], dtype = "Float64" )),
1107
1090
),
1108
- (
1109
- "max" ,
1110
- Series (
1111
- pd .array (
1112
- [1.0 , 2.0 , 3.0 , np .nan , 4.0 , 5.0 ], dtype = pd .ArrowDtype (pa .float64 ())
1113
- )
1114
- ),
1115
- ),
1116
1091
(
1117
1092
"max" ,
1118
1093
[
@@ -1140,14 +1115,6 @@ def scipy_sem(*args, **kwargs):
1140
1115
"mean" ,
1141
1116
Series (pd .array ([- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ], dtype = "Float64" )),
1142
1117
),
1143
- (
1144
- "mean" ,
1145
- Series (
1146
- pd .array (
1147
- [1.0 , 2.0 , 3.0 , np .nan , 4.0 , 5.0 ], dtype = pd .ArrowDtype (pa .float64 ())
1148
- )
1149
- ),
1150
- ),
1151
1118
(
1152
1119
"mean" ,
1153
1120
[
@@ -1175,14 +1142,6 @@ def scipy_sem(*args, **kwargs):
1175
1142
"median" ,
1176
1143
Series (pd .array ([- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ], dtype = "Float64" )),
1177
1144
),
1178
- (
1179
- "median" ,
1180
- Series (
1181
- pd .array (
1182
- [1.0 , 2.0 , 3.0 , np .nan , 4.0 , 5.0 ], dtype = pd .ArrowDtype (pa .float64 ())
1183
- )
1184
- ),
1185
- ),
1186
1145
(
1187
1146
"median" ,
1188
1147
[
@@ -1210,53 +1169,21 @@ def scipy_sem(*args, **kwargs):
1210
1169
"prod" ,
1211
1170
Series (pd .array ([- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ], dtype = "Float64" )),
1212
1171
),
1213
- (
1214
- "prod" ,
1215
- Series (
1216
- pd .array (
1217
- [1.0 , 2.0 , 3.0 , np .nan , 4.0 , 5.0 ], dtype = pd .ArrowDtype (pa .float64 ())
1218
- )
1219
- ),
1220
- ),
1221
1172
("sem" , [- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ]),
1222
1173
(
1223
1174
"sem" ,
1224
1175
Series (pd .array ([- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ], dtype = "Float64" )),
1225
1176
),
1226
- (
1227
- "sem" ,
1228
- Series (
1229
- pd .array (
1230
- [1.0 , 2.0 , 3.0 , np .nan , 4.0 , 5.0 ], dtype = pd .ArrowDtype (pa .float64 ())
1231
- )
1232
- ),
1233
- ),
1234
1177
("std" , [- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ]),
1235
1178
(
1236
1179
"std" ,
1237
1180
Series (pd .array ([- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ], dtype = "Float64" )),
1238
1181
),
1239
- (
1240
- "std" ,
1241
- Series (
1242
- pd .array (
1243
- [1.0 , 2.0 , 3.0 , np .nan , 4.0 , 5.0 ], dtype = pd .ArrowDtype (pa .float64 ())
1244
- )
1245
- ),
1246
- ),
1247
1182
("var" , [- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ]),
1248
1183
(
1249
1184
"var" ,
1250
1185
Series (pd .array ([- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ], dtype = "Float64" )),
1251
1186
),
1252
- (
1253
- "var" ,
1254
- Series (
1255
- pd .array (
1256
- [1.0 , 2.0 , 3.0 , np .nan , 4.0 , 5.0 ], dtype = pd .ArrowDtype (pa .float64 ())
1257
- )
1258
- ),
1259
- ),
1260
1187
("any" , [- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ]),
1261
1188
("all" , [- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ]),
1262
1189
("skew" , [- 1.0 , 1.2 , - 1.1 , 1.5 , np .nan , 1.0 ]),
@@ -1419,4 +1346,4 @@ def test_groupby_std_datetimelike():
1419
1346
td4 = pd .Timedelta ("2886 days 00:42:34.664668096" )
1420
1347
exp_ser = Series ([td1 * 2 , td1 , td1 , td1 , td4 ], index = np .arange (5 ))
1421
1348
expected = DataFrame ({"A" : exp_ser , "B" : exp_ser , "C" : exp_ser })
1422
- tm .assert_frame_equal (result , expected )
1349
+ tm .assert_frame_equal (result , expected )
0 commit comments