|
| 1 | +import os |
| 2 | +import sys |
| 3 | +import math |
| 4 | +import types |
| 5 | +import pytest |
| 6 | + |
| 7 | +# Add path to examples/utils |
| 8 | +sys.path.append(os.path.join(os.path.dirname(__file__), "..", "examples", "utils")) |
| 9 | + |
| 10 | +# --------------------------------------------------------------------------- |
| 11 | +# Provide lightweight stubs for external dependencies so that the utilities |
| 12 | +# can be imported without the real packages installed. Only the minimal |
| 13 | +# functionality needed for the tested functions is implemented. |
| 14 | +# --------------------------------------------------------------------------- |
| 15 | + |
| 16 | +# Minimal numpy stub |
| 17 | +np_stub = types.ModuleType("numpy") |
| 18 | + |
| 19 | +def _dot(a, b): |
| 20 | + return sum(x * y for x, y in zip(a, b)) |
| 21 | + |
| 22 | + |
| 23 | +def _norm(v): |
| 24 | + return math.sqrt(sum(x * x for x in v)) |
| 25 | + |
| 26 | + |
| 27 | +def _argsort(seq): |
| 28 | + return sorted(range(len(seq)), key=lambda i: seq[i]) |
| 29 | + |
| 30 | + |
| 31 | +np_stub.dot = _dot |
| 32 | +np_stub.array = lambda x: x |
| 33 | +np_stub.argsort = _argsort |
| 34 | +np_stub.linalg = types.SimpleNamespace(norm=_norm) |
| 35 | +np_stub.ndarray = list |
| 36 | +np_stub.isscalar = lambda x: not isinstance(x, (list, tuple)) |
| 37 | +np_stub.asarray = lambda x: list(x) |
| 38 | +sys.modules.setdefault("numpy", np_stub) |
| 39 | + |
| 40 | +# Minimal scipy.spatial.distance stub |
| 41 | +scipy_stub = types.ModuleType("scipy") |
| 42 | +spatial_stub = types.ModuleType("spatial") |
| 43 | +distance_stub = types.ModuleType("distance") |
| 44 | + |
| 45 | + |
| 46 | +def _cosine(a, b): |
| 47 | + return 1 - _dot(a, b) / (_norm(a) * _norm(b)) |
| 48 | + |
| 49 | + |
| 50 | +def _cityblock(a, b): |
| 51 | + return sum(abs(x - y) for x, y in zip(a, b)) |
| 52 | + |
| 53 | + |
| 54 | +def _euclidean(a, b): |
| 55 | + return math.sqrt(sum((x - y) ** 2 for x, y in zip(a, b))) |
| 56 | + |
| 57 | + |
| 58 | +def _chebyshev(a, b): |
| 59 | + return max(abs(x - y) for x, y in zip(a, b)) |
| 60 | + |
| 61 | + |
| 62 | +distance_stub.cosine = _cosine |
| 63 | +distance_stub.cityblock = _cityblock |
| 64 | +distance_stub.euclidean = _euclidean |
| 65 | +distance_stub.chebyshev = _chebyshev |
| 66 | +spatial_stub.distance = distance_stub |
| 67 | +scipy_stub.spatial = spatial_stub |
| 68 | +sys.modules.setdefault("scipy", scipy_stub) |
| 69 | +sys.modules.setdefault("scipy.spatial", spatial_stub) |
| 70 | +sys.modules.setdefault("scipy.spatial.distance", distance_stub) |
| 71 | + |
| 72 | +# Other unused imports in embeddings_utils |
| 73 | +sys.modules.setdefault("matplotlib", types.ModuleType("matplotlib")) |
| 74 | +sys.modules.setdefault( |
| 75 | + "matplotlib.pyplot", types.ModuleType("matplotlib.pyplot") |
| 76 | +) |
| 77 | +sys.modules.setdefault("plotly", types.ModuleType("plotly")) |
| 78 | +sys.modules.setdefault("plotly.express", types.ModuleType("plotly.express")) |
| 79 | +sys.modules.setdefault("sklearn", types.ModuleType("sklearn")) |
| 80 | +sklearn_decomp = types.ModuleType("sklearn.decomposition") |
| 81 | +sklearn_manifold = types.ModuleType("sklearn.manifold") |
| 82 | +sklearn_metrics = types.ModuleType("sklearn.metrics") |
| 83 | + |
| 84 | +class _Dummy: |
| 85 | + def __init__(self, *a, **k): |
| 86 | + pass |
| 87 | + |
| 88 | + def fit_transform(self, X): |
| 89 | + return X |
| 90 | + |
| 91 | + |
| 92 | +sklearn_decomp.PCA = _Dummy |
| 93 | +sklearn_manifold.TSNE = _Dummy |
| 94 | +sklearn_metrics.average_precision_score = lambda *a, **k: 0 |
| 95 | +sklearn_metrics.precision_recall_curve = lambda *a, **k: ([0], [0], [0]) |
| 96 | + |
| 97 | +sys.modules.setdefault("sklearn.decomposition", sklearn_decomp) |
| 98 | +sys.modules.setdefault("sklearn.manifold", sklearn_manifold) |
| 99 | +sys.modules.setdefault("sklearn.metrics", sklearn_metrics) |
| 100 | + |
| 101 | +openai_stub = types.ModuleType("openai") |
| 102 | +openai_stub.OpenAI = type("OpenAI", (), {"__init__": lambda self, *a, **k: None}) |
| 103 | +sys.modules.setdefault("openai", openai_stub) |
| 104 | +sys.modules.setdefault("pandas", types.ModuleType("pandas")) |
| 105 | + |
| 106 | +from embeddings_utils import ( |
| 107 | + cosine_similarity, |
| 108 | + distances_from_embeddings, |
| 109 | + indices_of_nearest_neighbors_from_distances, |
| 110 | +) |
| 111 | + |
| 112 | + |
| 113 | +def test_cosine_similarity_basic(): |
| 114 | + a = [1, 0] |
| 115 | + b = [1, 0] |
| 116 | + c = [0, 1] |
| 117 | + d = [1, 1] |
| 118 | + |
| 119 | + assert math.isclose(cosine_similarity(a, b), 1.0, rel_tol=1e-6) |
| 120 | + assert math.isclose(cosine_similarity(a, c), 0.0, rel_tol=1e-6) |
| 121 | + expected = 1 / math.sqrt(2) |
| 122 | + assert math.isclose(cosine_similarity(a, d), expected, rel_tol=1e-6) |
| 123 | + |
| 124 | + |
| 125 | +def test_distances_from_embeddings_cosine(): |
| 126 | + query = [1.0, 0.0] |
| 127 | + embeddings = [[1.0, 0.0], [0.0, 1.0], [1.0, 1.0]] |
| 128 | + dists = distances_from_embeddings(query, embeddings, distance_metric="cosine") |
| 129 | + expected = [0.0, 1.0, 1 - 1 / math.sqrt(2)] |
| 130 | + assert all( |
| 131 | + math.isclose(d, e, rel_tol=1e-6) for d, e in zip(dists, expected) |
| 132 | + ) |
| 133 | + |
| 134 | + |
| 135 | +def test_indices_of_nearest_neighbors_from_distances(): |
| 136 | + distances = [0.5, 0.2, 0.9] |
| 137 | + indices = indices_of_nearest_neighbors_from_distances(distances) |
| 138 | + assert list(indices) == [1, 0, 2] |
| 139 | + |
| 140 | + |
0 commit comments