Skip to content

Commit d5d8a91

Browse files
authored
[Doc] Add CN docs (#1621)
* add cn docs
1 parent bf67628 commit d5d8a91

14 files changed

+560
-1923
lines changed

docs/en/migration.md

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -224,9 +224,9 @@ Here is an example of typical pipelines:
224224
train_pipeline = [
225225
dict(type='LoadImage', file_client_args=file_client_args),
226226
dict(type='GetBBoxCenterScale'),
227-
dict(type='RandomBBoxTransform'),
228227
dict(type='RandomFlip', direction='horizontal'),
229228
dict(type='RandomHalfBody'),
229+
dict(type='RandomBBoxTransform'),
230230
dict(type='TopdownAffine', input_size=codec['input_size']),
231231
dict(type='GenerateTarget', target_type='heatmap', encoder=codec),
232232
dict(type='PackPoseInputs')
@@ -261,10 +261,10 @@ Commonly used transforms are defined in `$MMPOSE/mmpose/datasets/transforms/comm
261261

262262
For top-down methods, `Shift`, `Rotate`and `Resize` are implemented by `RandomBBoxTransform`**.** For bottom-up methods, `BottomupRandomAffine` is used.
263263

264-
All transforms in this part will only generate the **transformation matrix** and **will not** perform the actual transformation on the input data.
264+
Most data transforms depend on `bbox_center` and `bbox_scale`, which can be obtained by `GetBBoxCenterScale`.
265265

266266
```{note}
267-
Most data transforms depend on `bbox_center` and `bbox_scale`, which can be obtained by `GetBBoxCenterScale`.
267+
All transforms in this part will only generate the **transformation matrix** and **will not** perform the actual transformation on the input data.
268268
```
269269

270270
#### ii. Transformation
@@ -579,8 +579,6 @@ def loss(self,
579579

580580
MMPose 1.0 has been refactored extensively and addressed many legacy issues. Most of the code in MMPose 1.0 will not be compatible with 0.x version.
581581

582-
To try our best to help you migrate your code and model, here are some major changes:
583-
584582
### Data Transformation
585583

586584
#### Translation, Rotation and Scaling

docs/en/quick_run.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ We provide a bunch of well-prepared configs under `$MMPOSE/configs` so that you
8282
Going back to our example, we will use the prepared config:
8383

8484
```Bash
85-
$MMPOSE/configs/body_2d_keypoint/topdown_regression/coco/res50_coco_256x192_rle.py
85+
$MMPOSE/configs/body_2d_keypoint/topdown_regression/coco/td-reg_res50_rle-8xb64-210e_coco-256x192.py
8686
```
8787

8888
You can set the path of the COCO dataset by modifying `data_root` in the config:
@@ -101,7 +101,8 @@ Before training, we can browse the transformed training data to check if the ima
101101

102102
```Bash
103103
python tools/misc/browse_dastaset.py \
104-
configs/body_2d_keypoint/topdown_regression/coco/td-reg_res50_rle-8xb64-210e_coco-256x192.py
104+
configs/body_2d_keypoint/topdown_regression/coco/td-reg_res50_rle-8xb64-210e_coco-256x192.py \
105+
--mode transformed
105106
```
106107

107108
![transformed_training_img](https://user-images.githubusercontent.com/13503330/187112376-e604edcb-46cc-4995-807b-e8f204f991b0.png)

docs/zh_cn/installation.md

Lines changed: 2 additions & 187 deletions
Original file line numberDiff line numberDiff line change
@@ -1,188 +1,3 @@
1-
# Installation
1+
# 安装
22

3-
- [Prerequisites](#prerequisites)
4-
- [Installation](#installation)
5-
- [Best Practices](#best-practices)
6-
- [Customize Installation](#customize-installation)
7-
- [CUDA versions](#cuda-versions)
8-
- [Install MMEngine without MIM](#install-mmengine-without-mim)
9-
- [Install MMCV without MIM](#install-mmcv-without-mim)
10-
- [Install on CPU-only platforms](#install-on-cpu-only-platforms)
11-
- [Install on Google Colab](#install-on-google-colab)
12-
- [Using MMPose with Docker](#using-mmpose-with-docker)
13-
- [Trouble shooting](#trouble-shooting)
14-
15-
<!-- TOC -->
16-
17-
## Prerequisites
18-
19-
In this section we demonstrate how to prepare an environment with PyTorch.
20-
21-
MMPose works on Linux, Windows and macOS. It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.5+.
22-
23-
If you are experienced with PyTorch and have already installed it, just skip this part and jump to the [next section](#installation). Otherwise, you can follow these steps for the preparation.
24-
25-
**Step 0.** Download and install Miniconda from the [official website](https://docs.conda.io/en/latest/miniconda.html).
26-
27-
**Step 1.** Create a conda environment and activate it.
28-
29-
```shell
30-
conda create --name openmmlab python=3.8 -y
31-
conda activate openmmlab
32-
```
33-
34-
**Step 2.** Install PyTorch following [official instructions](https://pytorch.org/get-started/locally/), e.g.
35-
36-
On GPU platforms:
37-
38-
```shell
39-
conda install pytorch torchvision -c pytorch
40-
```
41-
42-
```{warning}
43-
This command will automatically install the latest version PyTorch and cudatoolkit, please check whether they match your environment.
44-
```
45-
46-
On CPU platforms:
47-
48-
```shell
49-
conda install pytorch torchvision cpuonly -c pytorch
50-
```
51-
52-
## Install MMPose
53-
54-
We recommend that users follow our best practices to install MMPose. However, the whole process is highly customizable. See [Customize Installation](#customize-installation) section for more information.
55-
56-
### Best Practices
57-
58-
**Step 0.** Install [MMEngine](https://github.com/open-mmlab/mmengine) and [MMCV](https://github.com/open-mmlab/mmcv) using [MIM](https://github.com/open-mmlab/mim).
59-
60-
```shell
61-
pip install -U openmim
62-
mim install mmengine
63-
mim install mmcv>=2.0.0rc1
64-
```
65-
66-
**Step 1.** Install MMPose.
67-
68-
Case a: If you develop and run mmpose directly, install it from source:
69-
70-
```shell
71-
git clone https://github.com/open-mmlab/mmpose.git -d dev-1.x
72-
# "-b dev-1.x" means checkout to the `dev-1.x` branch.
73-
cd mmpose
74-
pip install -r requirements.txt
75-
pip install -v -e .
76-
# "-v" means verbose, or more output
77-
# "-e" means installing a project in editable mode,
78-
# thus any local modifications made to the code will take effect without reinstallation.
79-
```
80-
81-
Case b: If you use mmpose as a dependency or third-party package, install it with pip:
82-
83-
```shell
84-
mim install mmpose>=1.0.0rc0
85-
```
86-
87-
### Customize Installation
88-
89-
#### CUDA versions
90-
91-
When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our recommendations:
92-
93-
- For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.
94-
- For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.
95-
96-
Please make sure the GPU driver satisfies the minimum version requirements. See [this table](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions) for more information.
97-
98-
Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to install the complete CUDA toolkit from NVIDIA's [website](https://developer.nvidia.com/cuda-downloads), and its version should match the CUDA version of PyTorch. i.e., the specified version of cudatoolkit in `conda install` command.
99-
100-
#### Install MMEngine without MIM
101-
102-
To install MMEngine with pip instead of MIM, please follow [MMEngine installation guides](https://mmengine.readthedocs.io/zh_CN/latest/get_started/installation.html).
103-
104-
For example, you can install MMEngine by the following command.
105-
106-
```shell
107-
pip install mmengine
108-
```
109-
110-
#### Install MMCV without MIM
111-
112-
MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such dependencies automatically and makes the installation easier. However, it is not a must.
113-
114-
To install MMCV with pip instead of MIM, please follow [MMCV installation guides](https://mmcv.readthedocs.io/en/latest/get_started/installation.html). This requires manually specifying a find-url based on PyTorch version and its CUDA version.
115-
116-
For example, the following command install mmcv-full built for PyTorch 1.10.x and CUDA 11.3.
117-
118-
```shell
119-
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
120-
```
121-
122-
#### Install on CPU-only platforms
123-
124-
MMPose can be built for CPU only environment. In CPU mode you can train (requires MMCV version >= 1.4.4), test or inference a model.
125-
126-
However, some functionalities are missing in this mode, usually GPU-compiled ops like `Deformable Convolution`. Most models in MMPose don't depend on these ops, but if you try to train/test/infer a model containing these ops, an error will be raised.
127-
128-
#### Install on Google Colab
129-
130-
[Google Colab](https://colab.research.google.com/) usually has PyTorch installed,
131-
thus we only need to install MMEngine, MMCV and MMPose with the following commands.
132-
133-
**Step 1.** Install [MMEngine](https://github.com/open-mmlab/mmengine) and [MMCV](https://github.com/open-mmlab/mmcv) using [MIM](https://github.com/open-mmlab/mim).
134-
135-
```shell
136-
!pip3 install openmim
137-
!mim install mmengine
138-
!mim install mmcv>=2.0.0rc1
139-
```
140-
141-
**Step 2.** Install MMPose from the source.
142-
143-
```shell
144-
!git clone https://github.com/open-mmlab/mmpose.git -b dev-1.x
145-
%cd mmpose
146-
!pip install -e .
147-
```
148-
149-
**Step 3.** Verification.
150-
151-
```python
152-
import mmpose
153-
print(mmpose.__version__)
154-
# Example output: 1.0.0
155-
```
156-
157-
```{note}
158-
Note that within Jupyter, the exclamation mark `!` is used to call external executables and `%cd` is a [magic command](https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd) to change the current working directory of Python.
159-
```
160-
161-
#### Using MMPose with Docker
162-
163-
We provide a [Dockerfile](https://github.com/open-mmlab/mmpose/blob/master/docker/Dockerfile) to build an image. Ensure that your [docker version](https://docs.docker.com/engine/install/) >=19.03.
164-
165-
```shell
166-
# build an image with PyTorch 1.6.0, CUDA 10.1, CUDNN 7.
167-
# If you prefer other versions, just modified the Dockerfile
168-
docker build -t mmpose docker/
169-
```
170-
171-
**Important:** Make sure you've installed the [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker).
172-
173-
Run it with
174-
175-
```shell
176-
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmpose/data mmpose
177-
```
178-
179-
`{DATA_DIR}` is your local folder containing all the datasets for mmpose.
180-
181-
```{note}
182-
If you encounter the error message like `permission denied`, please add `sudo` at the start of the command and try it again.
183-
```
184-
185-
### Trouble shooting
186-
187-
If you have some issues during the installation, please first view the [FAQ](./notes/faq.md) page.
188-
You may [open an issue](https://github.com/open-mmlab/mmpose/issues/new/choose) on GitHub if no solution is found.
3+
内容建设中

0 commit comments

Comments
 (0)