|
| 1 | +# Build and deploy DocSum Application on AMD GPU (ROCm) |
| 2 | + |
| 3 | +## Build images |
| 4 | + |
| 5 | +## 🚀 Build Docker Images |
| 6 | + |
| 7 | +First of all, you need to build Docker Images locally and install the python package of it. |
| 8 | + |
| 9 | +### 1. Build LLM Image |
| 10 | + |
| 11 | +```bash |
| 12 | +git clone https://github.com/opea-project/GenAIComps.git |
| 13 | +cd GenAIComps |
| 14 | +docker build -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/langchain/Dockerfile . |
| 15 | +``` |
| 16 | + |
| 17 | +Then run the command `docker images`, you will have the following four Docker Images: |
| 18 | + |
| 19 | +### 2. Build MegaService Docker Image |
| 20 | + |
| 21 | +To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `docsum.py` Python script. Build the MegaService Docker image via below command: |
| 22 | + |
| 23 | +```bash |
| 24 | +git clone https://github.com/opea-project/GenAIExamples |
| 25 | +cd GenAIExamples/DocSum/ |
| 26 | +docker build -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . |
| 27 | +``` |
| 28 | + |
| 29 | +### 3. Build UI Docker Image |
| 30 | + |
| 31 | +Build the frontend Docker image via below command: |
| 32 | + |
| 33 | +```bash |
| 34 | +cd GenAIExamples/DocSum/ui |
| 35 | +docker build -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile . |
| 36 | +``` |
| 37 | + |
| 38 | +Then run the command `docker images`, you will have the following Docker Images: |
| 39 | + |
| 40 | +1. `opea/llm-docsum-tgi:latest` |
| 41 | +2. `opea/docsum:latest` |
| 42 | +3. `opea/docsum-ui:latest` |
| 43 | + |
| 44 | +### 4. Build React UI Docker Image |
| 45 | + |
| 46 | +Build the frontend Docker image via below command: |
| 47 | + |
| 48 | +```bash |
| 49 | +cd GenAIExamples/DocSum/ui |
| 50 | +export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/docsum" |
| 51 | +docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT -f ./docker/Dockerfile.react . |
| 52 | + |
| 53 | +docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react . |
| 54 | +``` |
| 55 | + |
| 56 | +Then run the command `docker images`, you will have the following Docker Images: |
| 57 | + |
| 58 | +1. `opea/llm-docsum-tgi:latest` |
| 59 | +2. `opea/docsum:latest` |
| 60 | +3. `opea/docsum-ui:latest` |
| 61 | +4. `opea/docsum-react-ui:latest` |
| 62 | + |
| 63 | +## 🚀 Start Microservices and MegaService |
| 64 | + |
| 65 | +### Required Models |
| 66 | + |
| 67 | +Default model is "Intel/neural-chat-7b-v3-3". Change "LLM_MODEL_ID" in environment variables below if you want to use another model. |
| 68 | +For gated models, you also need to provide [HuggingFace token](https://huggingface.co/docs/hub/security-tokens) in "HUGGINGFACEHUB_API_TOKEN" environment variable. |
| 69 | + |
| 70 | +### Setup Environment Variables |
| 71 | + |
| 72 | +Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below. |
| 73 | + |
| 74 | +```bash |
| 75 | +export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm" |
| 76 | +export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3" |
| 77 | +export HOST_IP=${host_ip} |
| 78 | +export DOCSUM_TGI_SERVICE_PORT="18882" |
| 79 | +export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}" |
| 80 | +export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token} |
| 81 | +export DOCSUM_LLM_SERVER_PORT="8008" |
| 82 | +export DOCSUM_BACKEND_SERVER_PORT="8888" |
| 83 | +export DOCSUM_FRONTEND_PORT="5173" |
| 84 | +``` |
| 85 | + |
| 86 | +Note: Please replace with `host_ip` with your external IP address, do not use localhost. |
| 87 | + |
| 88 | +Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered<node>, where <node> is the card index, starting from 128. (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus) |
| 89 | + |
| 90 | +Example for set isolation for 1 GPU |
| 91 | + |
| 92 | +``` |
| 93 | + - /dev/dri/card0:/dev/dri/card0 |
| 94 | + - /dev/dri/renderD128:/dev/dri/renderD128 |
| 95 | +``` |
| 96 | + |
| 97 | +Example for set isolation for 2 GPUs |
| 98 | + |
| 99 | +``` |
| 100 | + - /dev/dri/card0:/dev/dri/card0 |
| 101 | + - /dev/dri/renderD128:/dev/dri/renderD128 |
| 102 | + - /dev/dri/card1:/dev/dri/card1 |
| 103 | + - /dev/dri/renderD129:/dev/dri/renderD129 |
| 104 | +``` |
| 105 | + |
| 106 | +Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus) |
| 107 | + |
| 108 | +### Start Microservice Docker Containers |
| 109 | + |
| 110 | +```bash |
| 111 | +cd GenAIExamples/DocSum/docker_compose/amd/gpu/rocm |
| 112 | +docker compose up -d |
| 113 | +``` |
| 114 | + |
| 115 | +### Validate Microservices |
| 116 | + |
| 117 | +1. TGI Service |
| 118 | + |
| 119 | + ```bash |
| 120 | + curl http://${host_ip}:8008/generate \ |
| 121 | + -X POST \ |
| 122 | + -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \ |
| 123 | + -H 'Content-Type: application/json' |
| 124 | + ``` |
| 125 | + |
| 126 | +2. LLM Microservice |
| 127 | + |
| 128 | + ```bash |
| 129 | + curl http://${host_ip}:9000/v1/chat/docsum \ |
| 130 | + -X POST \ |
| 131 | + -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \ |
| 132 | + -H 'Content-Type: application/json' |
| 133 | + ``` |
| 134 | + |
| 135 | +3. MegaService |
| 136 | + |
| 137 | + ```bash |
| 138 | + curl http://${host_ip}:8888/v1/docsum -H "Content-Type: application/json" -d '{ |
| 139 | + "messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32, "language":"en", "stream":false |
| 140 | + }' |
| 141 | + ``` |
| 142 | + |
| 143 | +## 🚀 Launch the Svelte UI |
| 144 | + |
| 145 | +Open this URL `http://{host_ip}:5173` in your browser to access the frontend. |
| 146 | + |
| 147 | + |
| 148 | + |
| 149 | +Here is an example for summarizing a article. |
| 150 | + |
| 151 | + |
| 152 | + |
| 153 | +## 🚀 Launch the React UI (Optional) |
| 154 | + |
| 155 | +To access the React-based frontend, modify the UI service in the `compose.yaml` file. Replace `docsum-rocm-ui-server` service with the `docsum-rocm-react-ui-server` service as per the config below: |
| 156 | + |
| 157 | +```yaml |
| 158 | +docsum-rocm-react-ui-server: |
| 159 | + image: ${REGISTRY:-opea}/docsum-react-ui:${TAG:-latest} |
| 160 | + container_name: docsum-rocm-react-ui-server |
| 161 | + depends_on: |
| 162 | + - docsum-rocm-backend-server |
| 163 | + ports: |
| 164 | + - "5174:80" |
| 165 | + environment: |
| 166 | + - no_proxy=${no_proxy} |
| 167 | + - https_proxy=${https_proxy} |
| 168 | + - http_proxy=${http_proxy} |
| 169 | + - DOC_BASE_URL=${BACKEND_SERVICE_ENDPOINT} |
| 170 | +``` |
| 171 | +
|
| 172 | +Open this URL `http://{host_ip}:5175` in your browser to access the frontend. |
| 173 | + |
| 174 | + |
0 commit comments