|
| 1 | +# Deploying ChatQnA with Qdrant on AMD EPYC™ Processors |
| 2 | + |
| 3 | +This document outlines the deployment process for a ChatQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on AMD EPYC servers. The pipeline integrates **Qdrant** as the vector database (VectorDB) and includes microservices such as `embedding`, `retriever`, `rerank`, and `llm`. |
| 4 | + |
| 5 | +--- |
| 6 | + |
| 7 | +## Table of Contents |
| 8 | + |
| 9 | +1. [Build Docker Images](#build-docker-images) |
| 10 | +2. [Validate Microservices](#validate-microservices) |
| 11 | +3. [Launch the UI](#launch-the-ui) |
| 12 | +4. [Launch the Conversational UI (Optional)](#launch-the-conversational-ui-optional) |
| 13 | + |
| 14 | +--- |
| 15 | + |
| 16 | +## Build Docker Images |
| 17 | + |
| 18 | +First of all, you need to build Docker Images locally and install the python package of it. |
| 19 | + |
| 20 | +```bash |
| 21 | +git clone https://github.com/opea-project/GenAIComps.git |
| 22 | +cd GenAIComps |
| 23 | +``` |
| 24 | + |
| 25 | +### 1. Build Retriever Image |
| 26 | + |
| 27 | +```bash |
| 28 | +docker build --no-cache -t opea/retriever:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/src/Dockerfile . |
| 29 | +``` |
| 30 | + |
| 31 | +### 2. Build Dataprep Image |
| 32 | + |
| 33 | +```bash |
| 34 | +docker build --no-cache -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/src/Dockerfile . |
| 35 | +cd .. |
| 36 | +``` |
| 37 | + |
| 38 | +### 3. Build MegaService Docker Image |
| 39 | + |
| 40 | +To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build MegaService Docker image via below command: |
| 41 | + |
| 42 | +```bash |
| 43 | +git clone https://github.com/opea-project/GenAIExamples.git |
| 44 | +cd GenAIExamples/ChatQnA/ |
| 45 | +docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . |
| 46 | +cd ../../.. |
| 47 | +``` |
| 48 | + |
| 49 | +### 4. Build UI Docker Image |
| 50 | + |
| 51 | +Build frontend Docker image via below command: |
| 52 | + |
| 53 | +```bash |
| 54 | +cd GenAIExamples/ChatQnA/ui |
| 55 | +docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile . |
| 56 | +cd ../../../.. |
| 57 | +``` |
| 58 | + |
| 59 | +### 5. Build Conversational React UI Docker Image (Optional) |
| 60 | + |
| 61 | +Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command: |
| 62 | + |
| 63 | +**Export the value of the public IP address of your epyc server to the `host_ip` environment variable** |
| 64 | + |
| 65 | +```bash |
| 66 | +cd GenAIExamples/ChatQnA/ui |
| 67 | +export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8912/v1/chatqna" |
| 68 | +export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6043/v1/dataprep/ingest" |
| 69 | +docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg DATAPREP_SERVICE_ENDPOINT=$DATAPREP_SERVICE_ENDPOINT -f ./docker/Dockerfile.react . |
| 70 | +cd ../../../.. |
| 71 | +``` |
| 72 | + |
| 73 | +### 6. Build Nginx Docker Image |
| 74 | + |
| 75 | +```bash |
| 76 | +cd GenAIComps |
| 77 | +docker build -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile . |
| 78 | +``` |
| 79 | + |
| 80 | +Then run the command `docker images`, you will have the following 5 Docker Images: |
| 81 | + |
| 82 | +1. `opea/dataprep:latest` |
| 83 | +2. `opea/retriever:latest` |
| 84 | +3. `opea/chatqna:latest` |
| 85 | +4. `opea/chatqna-ui:latest` |
| 86 | +5. `opea/nginx:latest` |
| 87 | + |
| 88 | +## Start Microservices |
| 89 | + |
| 90 | +### Required Models |
| 91 | + |
| 92 | +By default, the embedding, reranking and LLM models are set to a default value as listed below: |
| 93 | + |
| 94 | +| Service | Model | |
| 95 | +| --------- | ----------------------------------- | |
| 96 | +| Embedding | BAAI/bge-base-en-v1.5 | |
| 97 | +| Reranking | BAAI/bge-reranker-base | |
| 98 | +| LLM | meta-llama/Meta-Llama-3-8B-Instruct | |
| 99 | + |
| 100 | +Change the `xxx_MODEL_ID` below for your needs. |
| 101 | + |
| 102 | +### Setup Environment Variables |
| 103 | + |
| 104 | +Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below. |
| 105 | + |
| 106 | +**Export the value of the public IP address of your epyc server to the `host_ip` environment variable** |
| 107 | + |
| 108 | +> Change the External_Public_IP below with the actual IPV4 value |
| 109 | +
|
| 110 | +``` |
| 111 | +export host_ip="External_Public_IP" |
| 112 | +``` |
| 113 | + |
| 114 | +**Export the value of your Huggingface API token to the `your_hf_api_token` environment variable** |
| 115 | + |
| 116 | +> Change the Your_Huggingface_API_Token below with tyour actual Huggingface API Token value |
| 117 | +
|
| 118 | +``` |
| 119 | +export your_hf_api_token="Your_Huggingface_API_Token" |
| 120 | +``` |
| 121 | + |
| 122 | +**Append the value of the public IP address to the no_proxy list if you are in a proxy environment** |
| 123 | + |
| 124 | +``` |
| 125 | +export your_no_proxy=${your_no_proxy},"External_Public_IP",chatqna-epyc-ui-server,chatqna-epyc-backend-server,dataprep-qdrant-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service |
| 126 | +``` |
| 127 | + |
| 128 | +```bash |
| 129 | +export no_proxy=${your_no_proxy} |
| 130 | +export http_proxy=${your_http_proxy} |
| 131 | +export https_proxy=${your_http_proxy} |
| 132 | +export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5" |
| 133 | +export RERANK_MODEL_ID="BAAI/bge-reranker-base" |
| 134 | +export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct" |
| 135 | +export INDEX_NAME="rag-qdrant" |
| 136 | +``` |
| 137 | + |
| 138 | +Note: Please replace with `host_ip` with you external IP address, do not use localhost. |
| 139 | + |
| 140 | +### Start all the services Docker Containers |
| 141 | + |
| 142 | +> Before running the docker compose command, you need to be in the folder that has the docker compose yaml file |
| 143 | +
|
| 144 | +```bash |
| 145 | +cd GenAIExamples/ChatQnA/docker_compose/amd/cpu/epyc/ |
| 146 | +docker compose -f compose_qdrant.yaml up -d |
| 147 | +``` |
| 148 | + |
| 149 | +### Validate Microservices |
| 150 | + |
| 151 | +Follow the instructions to validate MicroServices. |
| 152 | + |
| 153 | +1. TEI Embedding Service |
| 154 | + |
| 155 | + ```bash |
| 156 | + curl ${host_ip}:6040/embed \ |
| 157 | + -X POST \ |
| 158 | + -d '{"inputs":"What is Deep Learning?"}' \ |
| 159 | + -H 'Content-Type: application/json' |
| 160 | + ``` |
| 161 | + |
| 162 | +2. Retriever Microservice |
| 163 | + |
| 164 | + To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector |
| 165 | + is determined by the embedding model. |
| 166 | + Here we use the model `EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"`, which vector size is 768. |
| 167 | + |
| 168 | + Check the vecotor dimension of your embedding model, set `your_embedding` dimension equals to it. |
| 169 | + |
| 170 | + ```bash |
| 171 | + export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") |
| 172 | + curl http://${host_ip}:6045/v1/retrieval \ |
| 173 | + -X POST \ |
| 174 | + -d '{"text":"What is the revenue of Nike in 2023?","embedding":"'"${your_embedding}"'"}' \ |
| 175 | + -H 'Content-Type: application/json' |
| 176 | + ``` |
| 177 | + |
| 178 | +3. TEI Reranking Service |
| 179 | + |
| 180 | + ```bash |
| 181 | + curl http://${host_ip}:6041/rerank \ |
| 182 | + -X POST \ |
| 183 | + -d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \ |
| 184 | + -H 'Content-Type: application/json' |
| 185 | + ``` |
| 186 | + |
| 187 | +4. LLM Backend Service |
| 188 | + |
| 189 | + In the first startup, this service will take more time to download, load and warm up the model. After it's finished, the service will be ready. |
| 190 | + |
| 191 | + Try the command below to check whether the LLM service is ready. |
| 192 | + |
| 193 | + ```bash |
| 194 | + docker logs vllm-service 2>&1 | grep complete |
| 195 | + ``` |
| 196 | + |
| 197 | + If the service is ready, you will get the response like below. |
| 198 | + |
| 199 | + ```text |
| 200 | + INFO: Application startup complete. |
| 201 | + ``` |
| 202 | + |
| 203 | + Then try the `cURL` command below to validate vLLM service. |
| 204 | + |
| 205 | + ```bash |
| 206 | + curl http://${host_ip}:6042/v1/chat/completions \ |
| 207 | + -X POST \ |
| 208 | + -d '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens":17}' \ |
| 209 | + -H 'Content-Type: application/json' |
| 210 | + ``` |
| 211 | + |
| 212 | +5. MegaService |
| 213 | + |
| 214 | + ```bash |
| 215 | + curl http://${host_ip}:8912/v1/chatqna -H "Content-Type: application/json" -d '{ |
| 216 | + "messages": "What is the revenue of Nike in 2023?" |
| 217 | + }' |
| 218 | + ``` |
| 219 | + |
| 220 | +6. Dataprep Microservice(Optional) |
| 221 | + |
| 222 | + If you want to update the default knowledge base, you can use the following commands: |
| 223 | + |
| 224 | + Update Knowledge Base via Local File Upload: |
| 225 | + |
| 226 | + ```bash |
| 227 | + curl -X POST "http://${host_ip}:6043/v1/dataprep/ingest" \ |
| 228 | + -H "Content-Type: multipart/form-data" \ |
| 229 | + -F "files=@./your_file.pdf" |
| 230 | + ``` |
| 231 | + |
| 232 | + This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment. |
| 233 | + |
| 234 | + Add Knowledge Base via HTTP Links: |
| 235 | + |
| 236 | + ```bash |
| 237 | + curl -X POST "http://${host_ip}:6043/v1/dataprep/ingest" \ |
| 238 | + -H "Content-Type: multipart/form-data" \ |
| 239 | + -F 'link_list=["https://opea.dev"]' |
| 240 | + ``` |
| 241 | + |
| 242 | +## Launch the UI |
| 243 | + |
| 244 | +To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below: |
| 245 | + |
| 246 | +```yaml |
| 247 | + chaqna-epyc-ui-server: |
| 248 | + image: opea/chatqna-ui:latest |
| 249 | + ... |
| 250 | + ports: |
| 251 | + - "80:5173" |
| 252 | +``` |
| 253 | +
|
| 254 | +## Launch the Conversational UI (Optional) |
| 255 | +
|
| 256 | +To access the Conversational UI frontend, open the following URL in your browser: http://{host_ip}:5174. By default, the UI runs on port 80 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below: |
| 257 | + |
| 258 | +```yaml |
| 259 | + chaqna-epyc-conversation-ui-server: |
| 260 | + image: opea/chatqna-conversation-ui:latest |
| 261 | + ... |
| 262 | + ports: |
| 263 | + - "80:80" |
| 264 | +``` |
| 265 | + |
| 266 | + |
| 267 | + |
| 268 | +Here is an example of running ChatQnA: |
| 269 | + |
| 270 | + |
| 271 | + |
| 272 | +Here is an example of running ChatQnA with Conversational UI (React): |
| 273 | + |
| 274 | + |
0 commit comments