|
| 1 | +// Time: O(n) |
| 2 | +// Space: O(h) |
| 3 | + |
| 4 | +/** |
| 5 | + * Definition for a binary tree node. |
| 6 | + * struct TreeNode { |
| 7 | + * int val; |
| 8 | + * TreeNode *left; |
| 9 | + * TreeNode *right; |
| 10 | + * TreeNode() : val(0), left(nullptr), right(nullptr) {} |
| 11 | + * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} |
| 12 | + * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} |
| 13 | + * }; |
| 14 | + */ |
| 15 | + |
| 16 | +// Time: O(n) |
| 17 | +// Space: O(h) |
| 18 | +class Solution { |
| 19 | +public: |
| 20 | + int countPairs(TreeNode* root, int distance) { |
| 21 | + return iter_dfs(distance, root); |
| 22 | + } |
| 23 | + |
| 24 | +private: |
| 25 | + int iter_dfs(int distance, TreeNode *root) { |
| 26 | + using RET = unordered_map<int, int>; |
| 27 | + int result = 0; |
| 28 | + RET ret; |
| 29 | + vector<tuple<int, TreeNode *, shared_ptr<RET>, shared_ptr<RET>, RET *>> stk = {{1, root, nullptr, nullptr, &ret}}; |
| 30 | + while (!stk.empty()) { |
| 31 | + const auto [step, node, left, right, ret] = stk.back(); stk.pop_back(); |
| 32 | + if (step == 1) { |
| 33 | + if (!node) { |
| 34 | + continue; |
| 35 | + } |
| 36 | + if (!node->left && !node->right) { |
| 37 | + (*ret)[0] = 1; |
| 38 | + continue; |
| 39 | + } |
| 40 | + const auto& left = make_shared<RET>(), &right = make_shared<RET>(); |
| 41 | + stk.emplace_back(2, nullptr, left, right, ret); |
| 42 | + stk.emplace_back(1, node->right, nullptr, nullptr, right.get()); |
| 43 | + stk.emplace_back(1, node->left, nullptr, nullptr, left.get()); |
| 44 | + } else { |
| 45 | + for (const auto& [left_d, left_c] : *left) { |
| 46 | + for (const auto& [right_d, right_c] : *right) { |
| 47 | + if (left_d + right_d + 2 <= distance) { |
| 48 | + result += left_c * right_c; |
| 49 | + } |
| 50 | + } |
| 51 | + } |
| 52 | + for (const auto& [left_d, left_c] : *left) { |
| 53 | + (*ret)[left_d + 1] += left_c; |
| 54 | + } |
| 55 | + for (const auto& [right_d, right_c] : *right) { |
| 56 | + (*ret)[right_d + 1] += right_c; |
| 57 | + } |
| 58 | + } |
| 59 | + } |
| 60 | + return result; |
| 61 | + } |
| 62 | +}; |
| 63 | + |
| 64 | + |
| 65 | +// Time: O(n) |
| 66 | +// Space: O(h) |
| 67 | +class Solution2 { |
| 68 | +public: |
| 69 | + int countPairs(TreeNode* root, int distance) { |
| 70 | + return dfs(distance, root).first; |
| 71 | + } |
| 72 | + |
| 73 | +private: |
| 74 | + pair<int, unordered_map<int, int>> dfs(int distance, TreeNode *node) { |
| 75 | + if (!node) { |
| 76 | + return {0, {}}; |
| 77 | + } |
| 78 | + if (!node->left && !node->right) { |
| 79 | + return {0, {{0, 1}}}; |
| 80 | + } |
| 81 | + const auto& left = dfs(distance, node->left); |
| 82 | + const auto& right = dfs(distance, node->right); |
| 83 | + int result = left.first + right.first; |
| 84 | + for (const auto& [left_d, left_c] : left.second) { |
| 85 | + for (const auto& [right_d, right_c] : right.second) { |
| 86 | + if (left_d + right_d + 2 <= distance) { |
| 87 | + result += left_c * right_c; |
| 88 | + } |
| 89 | + } |
| 90 | + } |
| 91 | + unordered_map<int, int> count; |
| 92 | + for (const auto& [left_d, left_c] : left.second) { |
| 93 | + count[left_d + 1] += left_c; |
| 94 | + } |
| 95 | + for (const auto& [right_d, right_c] : right.second) { |
| 96 | + count[right_d + 1] += right_c; |
| 97 | + } |
| 98 | + return {result, count}; |
| 99 | + } |
| 100 | +}; |
0 commit comments