|
| 1 | +// Time: O(m * n^2) |
| 2 | +// Space: O(n^2) |
| 3 | + |
| 4 | +class Solution { |
| 5 | +public: |
| 6 | + int cherryPickup(vector<vector<int>>& grid) { |
| 7 | + vector<vector<vector<int>>> dp(2, |
| 8 | + vector<vector<int>>(grid[0].size() + 2, |
| 9 | + vector<int>(grid[0].size() + 2, numeric_limits<int>::min()))); |
| 10 | + |
| 11 | + dp[0][1][grid[0].size()] = grid[0][0] + grid[0][grid[0].size() - 1]; |
| 12 | + int result = 0; |
| 13 | + for (int i = 1; i < grid.size(); ++i) { |
| 14 | + for (int j = 1; j <= grid[0].size(); ++j) { |
| 15 | + for (int k = 1; k <= grid[0].size(); ++k) { |
| 16 | + int max_prev_dp = numeric_limits<int>::min(); |
| 17 | + for (int d1 = -1; d1 <= 1; ++d1) { |
| 18 | + for (int d2 = -1; d2 <= 1; ++d2) { |
| 19 | + max_prev_dp = max(max_prev_dp, dp[(i - 1) % 2][j + d1][k + d2]); |
| 20 | + } |
| 21 | + } |
| 22 | + dp[i % 2][j][k] = (max_prev_dp == numeric_limits<int>::min()) ? numeric_limits<int>::min() : |
| 23 | + max_prev_dp + ((j != k) ? (grid[i][j - 1] + grid[i][k - 1]) : grid[i][j - 1]); |
| 24 | + result = max(result, dp[i % 2][j][k]); |
| 25 | + } |
| 26 | + } |
| 27 | + } |
| 28 | + return result; |
| 29 | + } |
| 30 | +}; |
| 31 | + |
| 32 | +// Time: O(m * n^2) |
| 33 | +// Space: O(n^2) |
| 34 | +class Solution2 { |
| 35 | +public: |
| 36 | + int cherryPickup(vector<vector<int>>& grid) { |
| 37 | + vector<vector<vector<int>>> dp(2, |
| 38 | + vector<vector<int>>(grid[0].size(), |
| 39 | + vector<int>(grid[0].size(), numeric_limits<int>::min()))); |
| 40 | + |
| 41 | + dp[0][0][grid[0].size() - 1] = grid[0][0] + grid[0][grid[0].size() - 1]; |
| 42 | + int result = 0; |
| 43 | + for (int i = 1; i < grid.size(); ++i) { |
| 44 | + for (int j = 0; j < grid[0].size(); ++j) { |
| 45 | + for (int k = 0; k < grid[0].size(); ++k) { |
| 46 | + int max_prev_dp = numeric_limits<int>::min(); |
| 47 | + for (int d1 = -1; d1 <= 1; ++d1) { |
| 48 | + if (!(0 <= j + d1 && j + d1 < grid[0].size())) { |
| 49 | + continue; |
| 50 | + } |
| 51 | + for (int d2 = -1; d2 <= 1; ++d2) { |
| 52 | + if (!(0 <= k + d2 && k + d2 < grid[0].size())) { |
| 53 | + continue; |
| 54 | + } |
| 55 | + max_prev_dp = max(max_prev_dp, dp[(i - 1) % 2][j + d1][k + d2]); |
| 56 | + } |
| 57 | + } |
| 58 | + dp[i % 2][j][k] = (max_prev_dp == numeric_limits<int>::min()) ? numeric_limits<int>::min() : |
| 59 | + max_prev_dp + ((j != k) ? (grid[i][j] + grid[i][k]) : grid[i][j]); |
| 60 | + result = max(result, dp[i % 2][j][k]); |
| 61 | + } |
| 62 | + } |
| 63 | + } |
| 64 | + return result; |
| 65 | + } |
| 66 | +}; |
0 commit comments