|
| 1 | +# Time: O(n^5) |
| 2 | +# Space: O(n^3) |
| 3 | + |
| 4 | +import collections |
| 5 | + |
| 6 | + |
| 7 | +class Solution(object): |
| 8 | + def countSubgraphsForEachDiameter(self, n, edges): |
| 9 | + """ |
| 10 | + :type n: int |
| 11 | + :type edges: List[List[int]] |
| 12 | + :rtype: List[int] |
| 13 | + """ |
| 14 | + def dfs(n, adj, curr, parent, lookup, count, dp): |
| 15 | + children = [] |
| 16 | + for child in adj[curr]: |
| 17 | + if child == parent or lookup[child]: |
| 18 | + continue |
| 19 | + dfs(n, adj, child, curr, lookup, count, dp) |
| 20 | + children.append(child) |
| 21 | + for child in children: |
| 22 | + new_dp_curr = [row[:] for row in dp[curr]]; |
| 23 | + for d in xrange(count[child]): |
| 24 | + for max_d in xrange(count[child]): |
| 25 | + new_dp_curr[d+1][max(max_d, d+1)] += dp[child][d][max_d] |
| 26 | + for curr_d in xrange(count[curr]): |
| 27 | + for curr_max_d in xrange(count[curr]): |
| 28 | + if not dp[curr][curr_d][curr_max_d]: |
| 29 | + continue |
| 30 | + for child_d in xrange(count[child]): |
| 31 | + for child_max_d in xrange(count[child]): |
| 32 | + max_d = max(curr_max_d, child_max_d, curr_d+child_d+1) |
| 33 | + if max_d < len(new_dp_curr[max(curr_d, child_d+1)]): |
| 34 | + new_dp_curr[max(curr_d, child_d+1)][max_d] += dp[curr][curr_d][curr_max_d]*dp[child][child_d][child_max_d] |
| 35 | + dp[curr] = new_dp_curr |
| 36 | + count[curr] += count[child] |
| 37 | + dp[curr][0][0] = 1 |
| 38 | + |
| 39 | + adj = collections.defaultdict(list) |
| 40 | + for u, v in edges: |
| 41 | + u -= 1 |
| 42 | + v -= 1 |
| 43 | + adj[u].append(v) |
| 44 | + adj[v].append(u) |
| 45 | + lookup, result = [0 for _ in xrange(n)], [0 for _ in xrange(n-1)] |
| 46 | + for i in xrange(n): |
| 47 | + dp = [[[0]*n for _ in xrange(n)] for _ in xrange(n)] |
| 48 | + count = [1]*n |
| 49 | + dfs(n, adj, i, -1, lookup, count, dp) |
| 50 | + lookup[i] = 1 |
| 51 | + for d in xrange(1, n): |
| 52 | + for max_d in xrange(1, n): |
| 53 | + result[max_d-1] += dp[i][d][max_d] |
| 54 | + return result |
| 55 | + |
| 56 | + |
| 57 | +# Time: O(n * 2^n) |
| 58 | +# Space: O(n) |
| 59 | +import collections |
| 60 | + |
| 61 | + |
| 62 | +class Solution2(object): |
| 63 | + def countSubgraphsForEachDiameter(self, n, edges): |
| 64 | + """ |
| 65 | + :type n: int |
| 66 | + :type edges: List[List[int]] |
| 67 | + :rtype: List[int] |
| 68 | + """ |
| 69 | + def bfs(adj, node_set, start): |
| 70 | + q = collections.deque([(start, 0)]) |
| 71 | + lookup = {start} |
| 72 | + u, d = None, None |
| 73 | + while q: |
| 74 | + u, d = q.popleft() |
| 75 | + for v in adj[u]: |
| 76 | + if v not in node_set or v in lookup: |
| 77 | + continue |
| 78 | + lookup.add(v) |
| 79 | + q.append((v, d+1)) |
| 80 | + return len(lookup) == len(node_set), u, d |
| 81 | + |
| 82 | + def max_distance(n, edges, adj, mask): |
| 83 | + node_set = set() |
| 84 | + base = 1 |
| 85 | + for i in xrange(n): |
| 86 | + if mask & base: |
| 87 | + node_set.add(i) |
| 88 | + base <<= 1 |
| 89 | + is_valid, farthest, _ = bfs(adj, node_set, next(iter(node_set), None)) |
| 90 | + return bfs(adj, node_set, farthest)[-1] if is_valid else 0 |
| 91 | + |
| 92 | + adj = collections.defaultdict(list) |
| 93 | + for u, v in edges: |
| 94 | + u -= 1 |
| 95 | + v -= 1 |
| 96 | + adj[u].append(v) |
| 97 | + adj[v].append(u) |
| 98 | + result = [0 for _ in xrange(n-1)] |
| 99 | + for mask in xrange(1, 2**n): |
| 100 | + d = max_distance(n, edges, adj, mask) |
| 101 | + if d-1 >= 0: |
| 102 | + result[d-1] += 1 |
| 103 | + return result |
0 commit comments