2026-01-13 nightly release (19cadd9d0e01e116d1da1fa66cce6cd9d132395e) #275
linux_cuda_aarch64_wheel.yaml
on: push
generate-matrix
/
generate
7s
Matrix: Build and Upload wheel / build
Waiting for pending jobs
Matrix: Build and Upload wheel / upload / upload
Waiting for pending jobs
Matrix: install-and-test
Annotations
5 warnings
|
install-and-test (3.10, 4.4.2)
The 'defaults' channel might have been added implicitly. If this is intentional, add 'defaults' to the 'channels' list. Otherwise, consider setting 'conda-remove-defaults' to 'true'.
|
|
install-and-test (3.10, 8.0)
The 'defaults' channel might have been added implicitly. If this is intentional, add 'defaults' to the 'channels' list. Otherwise, consider setting 'conda-remove-defaults' to 'true'.
|
|
install-and-test (3.10, 7.0.1)
The 'defaults' channel might have been added implicitly. If this is intentional, add 'defaults' to the 'channels' list. Otherwise, consider setting 'conda-remove-defaults' to 'true'.
|
|
install-and-test (3.10, 6.1.1)
The 'defaults' channel might have been added implicitly. If this is intentional, add 'defaults' to the 'channels' list. Otherwise, consider setting 'conda-remove-defaults' to 'true'.
|
|
install-and-test (3.10, 5.1.2)
The 'defaults' channel might have been added implicitly. If this is intentional, add 'defaults' to the 'channels' list. Otherwise, consider setting 'conda-remove-defaults' to 'true'.
|
Artifacts
Produced during runtime
| Name | Size | Digest | |
|---|---|---|---|
|
meta-pytorch_torchcodec__3.10_cu126_aarch64
|
2.08 MB |
sha256:86c08dc3c3ffa799701e30f13ac6b11bc426b55d75251d985ae46109ee47cb3e
|
|
|
meta-pytorch_torchcodec__3.10_cu128_aarch64
|
2.08 MB |
sha256:8696b4bbaf18fe6b863c9897ec3b42680792fb8fae8765b0a106e72397e1a8bf
|
|
|
meta-pytorch_torchcodec__3.10_cu129_aarch64
|
2.08 MB |
sha256:49b4321ebcced30a5435eb51f6ff41430b049135891616e345fc9ca591047e60
|
|
|
meta-pytorch_torchcodec__3.10_cu130_aarch64
|
2.07 MB |
sha256:70f44d180c757298b2cd0bc93170bc894ca035595cec537babafc77bc4848774
|
|
|
meta-pytorch_torchcodec__3.11_cu126_aarch64
|
2.08 MB |
sha256:bdc7dcd01582a36e4ffc17815cb30688ba14031eac225b1a7dcb45e495e35e3d
|
|
|
meta-pytorch_torchcodec__3.11_cu128_aarch64
|
2.08 MB |
sha256:7e37331bb6bfe299bd447a9b9bdcc2bc4dc2bf39c70ba20e328090b5d1efd359
|
|
|
meta-pytorch_torchcodec__3.11_cu129_aarch64
|
2.08 MB |
sha256:aa652f29b687a4d6e438d907e9b14c1a4cff30b989aee05a89d852b5022886b7
|
|
|
meta-pytorch_torchcodec__3.11_cu130_aarch64
|
2.08 MB |
sha256:a5ce8ce1f86f26bdde4c49cb3ca5505f48e5dbca6ae415b991890ee9d5448df6
|
|
|
meta-pytorch_torchcodec__3.12_cu126_aarch64
|
2.09 MB |
sha256:547d0f4413d5986d78a4d6eb7c98b1547e2c135b241a0535c1e06055a25ace23
|
|
|
meta-pytorch_torchcodec__3.12_cu128_aarch64
|
2.09 MB |
sha256:00639bb57d5d5970ca39753a6ddabace179cb27fed4a6244325fde25826d403e
|
|
|
meta-pytorch_torchcodec__3.12_cu129_aarch64
|
2.09 MB |
sha256:4fdfb6f73d1a9694456a7e60924f92e896287df9526755fa0364e632c13fafdb
|
|
|
meta-pytorch_torchcodec__3.12_cu130_aarch64
|
2.09 MB |
sha256:68d7b2a4aab66a14ee567dcb89e878148707b857db94d21884e2f07460a40e07
|
|
|
meta-pytorch_torchcodec__3.13_cu126_aarch64
|
2.09 MB |
sha256:37ca7d637b4e949039c448aa88bc6209abc20b106ee2e71049e0db8b7e4d4144
|
|
|
meta-pytorch_torchcodec__3.13_cu128_aarch64
|
2.09 MB |
sha256:3a67c52b0bff40374646c07923a221624432fb3db95e23f95b6fc8877c5ac825
|
|
|
meta-pytorch_torchcodec__3.13_cu129_aarch64
|
2.09 MB |
sha256:b21d94d794c1d695f4ace1cc1001057c6f327f9b607c705e53b046bcff7ed771
|
|
|
meta-pytorch_torchcodec__3.13_cu130_aarch64
|
2.09 MB |
sha256:f2a9e9c6c08e96c17cf8da59440329ce487a0e6a9c798cb18113fe5893dc4a6a
|
|
|
meta-pytorch_torchcodec__3.13t_cu126_aarch64
|
2.1 MB |
sha256:1fbd08f72e7c0762cb1884d471e8a58984bd87933f802cd835a7ef505137f910
|
|
|
meta-pytorch_torchcodec__3.13t_cu128_aarch64
|
2.1 MB |
sha256:32d54047a414970c4ac88b9b47b66cc538ba0510abe5dd23943f56fe199da0bb
|
|
|
meta-pytorch_torchcodec__3.13t_cu129_aarch64
|
2.1 MB |
sha256:a80fe69ae2993917dd239ae613db092a265eb69ba6b2f8f4428ed1a853f47561
|
|
|
meta-pytorch_torchcodec__3.13t_cu130_aarch64
|
2.09 MB |
sha256:108efff3e9051817271873e55c2b2f1609d5332246cd801f2ae3c2dedbb6726b
|
|
|
meta-pytorch_torchcodec__3.14_cu126_aarch64
|
2.09 MB |
sha256:d225cd7edadd189909a761be1fc97de514776a248e8c042502fe1fd2010d4f10
|
|
|
meta-pytorch_torchcodec__3.14_cu128_aarch64
|
2.09 MB |
sha256:e5557aef9fbcfbe8cef1724d2589c840917ed6c711546b01c48b0240feb081f4
|
|
|
meta-pytorch_torchcodec__3.14_cu129_aarch64
|
2.09 MB |
sha256:227f72d9ff5dbc7eb007274df75a328dfd71c8e146f96fd9fccca1f26f6e149d
|
|
|
meta-pytorch_torchcodec__3.14_cu130_aarch64
|
2.09 MB |
sha256:d930ec5f819b3b3abbb4eed1f2c7cd3d7d42278efeb3010888a876a777bdf092
|
|
|
meta-pytorch_torchcodec__3.14t_cu126_aarch64
|
2.1 MB |
sha256:8254e696500c3de0ba6a7e42358090178adbc4fb46ff55f127cc0acd5c3fbd66
|
|
|
meta-pytorch_torchcodec__3.14t_cu128_aarch64
|
2.1 MB |
sha256:8499c40b8b4548a2ccf2938ffe9e9f8a64a252e2107d5c90239d6e60cce0f2e8
|
|
|
meta-pytorch_torchcodec__3.14t_cu129_aarch64
|
2.1 MB |
sha256:97a6246321c49a89958bef2659f33ad70799db7f1d03d4bcf10ab57b0e2f4e7d
|
|
|
meta-pytorch_torchcodec__3.14t_cu130_aarch64
|
2.09 MB |
sha256:56d98f0526b016005ca34a254331385efb0b21a8f9b3c9854353c549a1dc0149
|
|