|
| 1 | +// @sect3{Functions.cc} |
| 2 | +// In this file we keep right hand side function, Dirichlet boundary |
| 3 | +// conditions and solution to our Poisson equation problem. Since |
| 4 | +// these classes and functions have been discussed extensively in |
| 5 | +// the deal.ii tutorials we won't discuss them any further. |
| 6 | +#include <deal.II/base/function.h> |
| 7 | +#include <deal.II/base/tensor_function.h> |
| 8 | +#include <deal.II/lac/vector.h> |
| 9 | +#include <cmath> |
| 10 | + |
| 11 | +using namespace dealii; |
| 12 | + |
| 13 | +template <int dim> |
| 14 | +class RightHandSide : public Function<dim> |
| 15 | +{ |
| 16 | +public: |
| 17 | + RightHandSide() : Function<dim>(1) |
| 18 | + {} |
| 19 | + |
| 20 | + virtual double value(const Point<dim> &p, |
| 21 | + const unsigned int component = 0 ) const; |
| 22 | +}; |
| 23 | + |
| 24 | +template <int dim> |
| 25 | +class DirichletBoundaryValues : public Function<dim> |
| 26 | +{ |
| 27 | +public: |
| 28 | + DirichletBoundaryValues() : Function<dim>(1) |
| 29 | + {} |
| 30 | + |
| 31 | + virtual double value(const Point<dim> &p, |
| 32 | + const unsigned int component = 0 ) const; |
| 33 | +}; |
| 34 | + |
| 35 | +template<int dim> |
| 36 | +class TrueSolution : public Function<dim> |
| 37 | +{ |
| 38 | +public: |
| 39 | + TrueSolution() : Function<dim>(dim+1) |
| 40 | + {} |
| 41 | + |
| 42 | + virtual void vector_value(const Point<dim> & p, |
| 43 | + Vector<double> &valuess) const; |
| 44 | +}; |
| 45 | + |
| 46 | +template <int dim> |
| 47 | +double |
| 48 | +RightHandSide<dim>:: |
| 49 | +value(const Point<dim> &p, |
| 50 | + const unsigned int ) const |
| 51 | +{ |
| 52 | + const double x = p[0]; |
| 53 | + const double y = p[1]; |
| 54 | + return 4*M_PI*M_PI*(cos(2*M_PI*y) - sin(2*M_PI*x)); |
| 55 | + |
| 56 | +} |
| 57 | + |
| 58 | +template <int dim> |
| 59 | +double |
| 60 | +DirichletBoundaryValues<dim>:: |
| 61 | +value(const Point<dim> &p, |
| 62 | + const unsigned int ) const |
| 63 | +{ |
| 64 | + const double x = p[0]; |
| 65 | + const double y = p[1]; |
| 66 | + return cos(2*M_PI*y) -sin(2*M_PI*x) - x; |
| 67 | +} |
| 68 | + |
| 69 | + |
| 70 | +template <int dim> |
| 71 | +void |
| 72 | +TrueSolution<dim>:: |
| 73 | +vector_value(const Point<dim> &p, |
| 74 | + Vector<double> &values) const |
| 75 | +{ |
| 76 | + Assert(values.size() == dim+1, |
| 77 | + ExcDimensionMismatch(values.size(), dim+1) ); |
| 78 | + |
| 79 | + double x = p[0]; |
| 80 | + double y = p[1]; |
| 81 | + |
| 82 | + values(0) = 1 + 2*M_PI*cos(2*M_PI*x); |
| 83 | + values(1) = 2*M_PI*sin(2*M_PI*y); |
| 84 | + |
| 85 | + values(2) = cos(2*M_PI*y) - sin(2*M_PI*x) - x; |
| 86 | +} |
0 commit comments