Skip to content

Commit 19c0a1e

Browse files
committed
Missing word.
1 parent 60a3446 commit 19c0a1e

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -71,14 +71,14 @@ Download or [clone](https://www.mathworks.com/help/matlab/matlab_prog/use-source
7171
## Example: Classify Text Data Using BERT
7272
The simplest use of a pretrained BERT model is to use it as a feature extractor. In particular, you can use the BERT model to convert documents to feature vectors which you can then use as inputs to train a deep learning classification network.
7373

74-
The example [`ClassifyTextDataUsingBERT.m`](./ClassifyTextDataUsingBERT.m) shows how to use a pretrained BERT model to classify failure events given a data set of factory reports. This example requires the `factoryReports.csv` data set from the Text Analytics example [Prepare Text Data for Analysis](https://www.mathworks.com/help/textanalytics/ug/prepare-text-data-for-analysis.html).
74+
The example [`ClassifyTextDataUsingBERT.m`](./ClassifyTextDataUsingBERT.m) shows how to use a pretrained BERT model to classify failure events given a data set of factory reports. This example requires the `factoryReports.csv` data set from the Text Analytics Toolbox example [Prepare Text Data for Analysis](https://www.mathworks.com/help/textanalytics/ug/prepare-text-data-for-analysis.html).
7575

7676
## Example: Fine-Tune Pretrained BERT Model
7777
To get the most out of a pretrained BERT model, you can retrain and fine tune the BERT parameters weights for your task.
7878

79-
The example [`FineTuneBERT.m`](./FineTuneBERT.m) shows how to fine-tune a pretrained BERT model to classify failure events given a data set of factory reports. This example requires the `factoryReports.csv` data set from the Text Analytics example [Prepare Text Data for Analysis](https://www.mathworks.com/help/textanalytics/ug/prepare-text-data-for-analysis.html).
79+
The example [`FineTuneBERT.m`](./FineTuneBERT.m) shows how to fine-tune a pretrained BERT model to classify failure events given a data set of factory reports. This example requires the `factoryReports.csv` data set from the Text Analytics Toolbox example [Prepare Text Data for Analysis](https://www.mathworks.com/help/textanalytics/ug/prepare-text-data-for-analysis.html).
8080

81-
The example [`FineTuneBERTJapanese.m`](./FineTuneBERTJapanese.m) shows the same workflow using a pretrained Japanese-BERT model. This example requires the `factoryReportsJP.csv` data set from the Text Analytics example [Analyze Japanese Text Data](https://www.mathworks.com/help/textanalytics/ug/analyze-japanese-text.html), available in R2023a or later.
81+
The example [`FineTuneBERTJapanese.m`](./FineTuneBERTJapanese.m) shows the same workflow using a pretrained Japanese-BERT model. This example requires the `factoryReportsJP.csv` data set from the Text Analytics Toolbox example [Analyze Japanese Text Data](https://www.mathworks.com/help/textanalytics/ug/analyze-japanese-text.html), available in R2023a or later.
8282

8383
## Example: Analyze Sentiment with FinBERT
8484
FinBERT is a sentiment analysis model trained on financial text data and fine-tuned for sentiment analysis.

0 commit comments

Comments
 (0)