|
| 1 | +/* |
| 2 | + * Cracking the coding interview edition 6 |
| 3 | + * Given a string, write a function to check if it is a permutation of a pallindrome. |
| 4 | + * |
| 5 | + * Solution Philosophy: |
| 6 | + * For a string to be pallindrome, it should be able to spelled backward and forward the same. |
| 7 | + * Therefore the chars in string should fit one of the two possibilities: |
| 8 | + * - Each char appear even number of times in the string ( even length string ) |
| 9 | + * - Each char should appear even number of times, except just one char ( odd length string ) |
| 10 | + * |
| 11 | + * We won't care about the case of the letter |
| 12 | + */ |
| 13 | + |
| 14 | +#include <iostream> |
| 15 | + |
| 16 | + |
| 17 | +/* |
| 18 | + * Helper routine to return an frequency Table index |
| 19 | + * |
| 20 | + */ |
| 21 | + |
| 22 | +int getCharIndex( char c ) |
| 23 | +{ |
| 24 | + int idx = -1; |
| 25 | + if ( c >= 'a' && c <= 'z' ) |
| 26 | + { |
| 27 | + idx = c - 'a'; |
| 28 | + } |
| 29 | + else if ( c >= 'A' && c <= 'Z' ) |
| 30 | + { |
| 31 | + idx = c - 'A'; |
| 32 | + } |
| 33 | + return idx; |
| 34 | +} |
| 35 | + |
| 36 | +/* |
| 37 | + * Function : countFrequency |
| 38 | + * Args : input string, an array of int |
| 39 | + * Return : Void, array of int will populate each letter's frequency in string. |
| 40 | + */ |
| 41 | + |
| 42 | +void countFrequency( const std::string & str, int *frequency ) |
| 43 | +{ |
| 44 | + int idx; |
| 45 | + for (const char & c : str) |
| 46 | + { |
| 47 | + idx = getCharIndex(c); |
| 48 | + if ( idx != -1 ) |
| 49 | + { |
| 50 | + ++frequency[idx]; |
| 51 | + } |
| 52 | + } |
| 53 | +} |
| 54 | + |
| 55 | + |
| 56 | +/* |
| 57 | + * Function : isPermutePallindrome |
| 58 | + * Args : input string |
| 59 | + * Return : returns true if is possible that one of the permutations of input string can be a pallindrome. |
| 60 | + * else return false |
| 61 | + */ |
| 62 | + |
| 63 | +bool isPermutationOfPallindrome1( const std::string & str ) |
| 64 | +{ |
| 65 | + int frequency[ 26 ] = { 0 }; |
| 66 | + countFrequency( str, frequency ); |
| 67 | + |
| 68 | + /* |
| 69 | + * We will check here that letter frequencies are all even or all even except one odd. |
| 70 | + */ |
| 71 | + bool oddAppeared = false; |
| 72 | + std::cout << std::endl; |
| 73 | + for ( int i = 0 ; i < 26; ++i ) { |
| 74 | + if ( frequency[i] % 2 && oddAppeared ) { |
| 75 | + return false; |
| 76 | + } else if ( frequency[i] % 2 && !oddAppeared ) { |
| 77 | + oddAppeared = true; |
| 78 | + } |
| 79 | + } |
| 80 | + return true; |
| 81 | +} |
| 82 | + |
| 83 | + |
| 84 | +/* |
| 85 | + * Approach 2: |
| 86 | + * Let us optimize above function instead of taking another pass let us do it |
| 87 | + * in one go, we will count odd chars as we go along, if we are left with |
| 88 | + * more that 0 or 1, then the input string can't have pallindrome permutation |
| 89 | + */ |
| 90 | + |
| 91 | +bool isPermutationOfPallindrome2( const std::string & str ) |
| 92 | +{ |
| 93 | + int oddCount = 0; |
| 94 | + int frequency[26] = { 0 }; |
| 95 | + int idx = 0; |
| 96 | + for ( const char & c : str ) |
| 97 | + { |
| 98 | + idx = getCharIndex(c); |
| 99 | + if ( idx != -1 ) |
| 100 | + { |
| 101 | + ++frequency[idx]; |
| 102 | + if ( frequency[idx] % 2 ) |
| 103 | + { |
| 104 | + ++oddCount; |
| 105 | + } else { |
| 106 | + --oddCount; |
| 107 | + } |
| 108 | + } |
| 109 | + } |
| 110 | + return (oddCount <= 1); |
| 111 | +} |
| 112 | + |
| 113 | +/* |
| 114 | + * Approach 3 |
| 115 | + * let us represent each char with a bit in a bitvector |
| 116 | + * Each time a char appears in the string we toggle the |
| 117 | + * respective bit, if we are left with more than 1 bit |
| 118 | + * in the bit vector, the string can not have a pallidrome |
| 119 | + * permutation. |
| 120 | + * |
| 121 | + */ |
| 122 | + |
| 123 | +/* |
| 124 | + * helper function to toggle a bit in the integer |
| 125 | + */ |
| 126 | + |
| 127 | +int toggle( int bitVector, int index ) |
| 128 | +{ |
| 129 | + if ( index < 0 ) |
| 130 | + return bitVector; |
| 131 | + |
| 132 | + int mask = 1 << index; |
| 133 | + //if bit is not set |
| 134 | + if ( (bitVector & mask ) == 0 ) |
| 135 | + { |
| 136 | + bitVector |= mask; |
| 137 | + } else { //if bit is set |
| 138 | + bitVector &= ~mask; |
| 139 | + } |
| 140 | + return bitVector; |
| 141 | +} |
| 142 | + |
| 143 | +/* |
| 144 | + * Helper functiont to find if a single bit is set |
| 145 | + * i.e. if bitVector is a multiple of power of 2 |
| 146 | + */ |
| 147 | + |
| 148 | +bool isExactlyOneBitSet( int bitVector ) |
| 149 | +{ |
| 150 | + return ( (bitVector & (bitVector - 1)) == 0 ); |
| 151 | +} |
| 152 | + |
| 153 | +/* |
| 154 | + * Third approach solution |
| 155 | + * toggle bit represent the respective char |
| 156 | + * for each appearance in the string. |
| 157 | + */ |
| 158 | + |
| 159 | +bool isPermutationOfPallindrome3( const std::string & str ) |
| 160 | +{ |
| 161 | + int bitVector = 0; |
| 162 | + int id = 0; |
| 163 | + for ( const char & c : str ) |
| 164 | + { |
| 165 | + id = getCharIndex(c); |
| 166 | + bitVector = toggle (bitVector, id ); |
| 167 | + } |
| 168 | + return ( bitVector == 0 || isExactlyOneBitSet(bitVector) ); |
| 169 | +} |
| 170 | + |
| 171 | +int main() |
| 172 | +{ |
| 173 | + std::string str("Tact Coa"); |
| 174 | + std::cout << "Does \"" << str << "\" has a string whose permutation is a pallindrome? " |
| 175 | + << "( 1 for true, 0 for false ) : "; |
| 176 | + std::cout << "Approach 1:" << isPermutationOfPallindrome1( str ) << std::endl; |
| 177 | + std::cout << "Approach 2:" << isPermutationOfPallindrome2( str ) << std::endl; |
| 178 | + std::cout << "Approach 3:" << isPermutationOfPallindrome3( str ) << std::endl; |
| 179 | + |
| 180 | + |
| 181 | + std::string str1("A big Cat"); |
| 182 | + std::cout << "Does \"" << str1 << "\" has a string whose permutation is a pallindrome? " |
| 183 | + << "( 1 for true, 0 for false ) : "; |
| 184 | + std::cout << "Approach 1:" << isPermutationOfPallindrome1( str1 ) << std::endl; |
| 185 | + std::cout << "Approach 2:" << isPermutationOfPallindrome2( str1 ) << std::endl; |
| 186 | + std::cout << "Approach 3:" << isPermutationOfPallindrome3( str1 ) << std::endl; |
| 187 | + |
| 188 | + |
| 189 | + std::string str2("Aba cbc"); |
| 190 | + std::cout << "Does \"" << str2 << "\" has a string whose permutation is a pallindrome? " |
| 191 | + << "( 1 for true, 0 for false ) : "; |
| 192 | + std::cout << "Approach 1:" << isPermutationOfPallindrome1( str2 ) << std::endl; |
| 193 | + std::cout << "Approach 2:" << isPermutationOfPallindrome2( str2 ) << std::endl; |
| 194 | + std::cout << "Approach 3:" << isPermutationOfPallindrome3( str2 ) << std::endl; |
| 195 | + return 0; |
| 196 | +} |
0 commit comments