|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +import itertools as it |
| 4 | +import functools as ft |
| 5 | +import operator as op |
| 6 | + |
| 7 | + |
| 8 | +GF_POW = [] |
| 9 | +GF_LOG = [] |
| 10 | + |
| 11 | +# build the GF_POW/GF_LOG tables |
| 12 | +def build_gf_tables(p): |
| 13 | + global GF_POW |
| 14 | + global GF_LOG |
| 15 | + pow_table = [] |
| 16 | + log_table = {} |
| 17 | + |
| 18 | + x = 1 |
| 19 | + for i in range(256): |
| 20 | + pow_table.append(x) |
| 21 | + if x not in log_table: |
| 22 | + log_table[x] = i |
| 23 | + |
| 24 | + x <<= 1 |
| 25 | + if x & 0x100: |
| 26 | + x ^= p |
| 27 | + |
| 28 | + GF_POW = pow_table |
| 29 | + GF_LOG = [log_table.get(i, 0xff) for i in range(256)] |
| 30 | + |
| 31 | +# GF(256) operations |
| 32 | +def gf_mul(a, b): |
| 33 | + if a == 0 or b == 0: |
| 34 | + return 0 |
| 35 | + |
| 36 | + x = GF_LOG[a] + GF_LOG[b] |
| 37 | + if x > 255: |
| 38 | + x -= 255 |
| 39 | + return GF_POW[x] |
| 40 | + |
| 41 | +def gf_div(a, b): |
| 42 | + assert b != 0 |
| 43 | + |
| 44 | + x = GF_LOG[a] + 255 - GF_LOG[b] |
| 45 | + if x > 255: |
| 46 | + x -= 255 |
| 47 | + return GF_POW[x] |
| 48 | + |
| 49 | +def gf_pow(a, e): |
| 50 | + if e == 0: |
| 51 | + return 1 |
| 52 | + elif a == 0: |
| 53 | + return 0 |
| 54 | + else: |
| 55 | + x = (GF_LOG[a] * e) % 255 |
| 56 | + return GF_POW[x] |
| 57 | + |
| 58 | + |
| 59 | +# GF(256) polynomial operations |
| 60 | +def gf_p_eval(p, x): |
| 61 | + y = 0 |
| 62 | + for p_ in p: |
| 63 | + y = gf_mul(y, x) ^ p_ |
| 64 | + return y |
| 65 | + |
| 66 | +def gf_p_scale(p, c): |
| 67 | + return [gf_mul(p_, c) for p_ in p] |
| 68 | + |
| 69 | +def gf_p_xor(a, b): |
| 70 | + r = [0]*max(len(a), len(b)) |
| 71 | + for i, a_ in enumerate(a): |
| 72 | + r[i + len(r)-len(a)] ^= a_ |
| 73 | + for i, b_ in enumerate(b): |
| 74 | + r[i + len(r)-len(b)] ^= b_ |
| 75 | + return r |
| 76 | + |
| 77 | +def gf_p_mul(a, b): |
| 78 | + r = [0]*(len(a)+len(b)-1) |
| 79 | + for i, a_ in enumerate(a): |
| 80 | + for j, b_ in enumerate(b): |
| 81 | + r[i+j] ^= gf_mul(a_, b_) |
| 82 | + return r |
| 83 | + |
| 84 | +def gf_p_divmod(a, b): |
| 85 | + assert len(a) >= len(b) |
| 86 | + r = a.copy() |
| 87 | + for i in range(len(a)-len(b)+1): |
| 88 | + if r[i] != 0: |
| 89 | + r[i] = gf_div(r[i], b[0]) |
| 90 | + |
| 91 | + for j, b_ in enumerate(b[1:]): |
| 92 | + r[i+j] ^= gf_mul(r[i], b_) |
| 93 | + return r |
| 94 | + |
| 95 | + |
| 96 | +def main(ecc_size, *, |
| 97 | + p=None, |
| 98 | + no_truncate=False): |
| 99 | + # first build our GF_POW/GF_LOG tables based on p |
| 100 | + build_gf_tables(p) |
| 101 | + |
| 102 | + # calculate generator polynomial |
| 103 | + # |
| 104 | + # P(x) = prod_i^n-1 (x - g^i) |
| 105 | + # |
| 106 | + # the important property of P(x) is that it evaluates to 0 |
| 107 | + # at every x=g^i for i < n |
| 108 | + # |
| 109 | + p = ft.reduce( |
| 110 | + gf_p_mul, |
| 111 | + ([1, gf_pow(2, i)] for i in range(ecc_size)), |
| 112 | + [1]) |
| 113 | + |
| 114 | + # print the generator polynomial |
| 115 | + print("// generator polynomial for ecc_size=%s" % ecc_size) |
| 116 | + print("//") |
| 117 | + print("// P(x) = prod_i^n-1 (x - g^i)") |
| 118 | + print("//") |
| 119 | + print("static const uint8_t RAMRSBD_P[%s] = {" % ( |
| 120 | + len(p) if no_truncate else len(p[1:]))) |
| 121 | + if no_truncate: |
| 122 | + print(" ", end='') |
| 123 | + print("0x%02x," % p[0]) |
| 124 | + for j in range((len(p[1:])+8-1)//8): |
| 125 | + print(" ", end='') |
| 126 | + for i in range(8): |
| 127 | + if j*8+i < len(p[1:]): |
| 128 | + print("%s0x%02x," % ( |
| 129 | + " " if i != 0 else "", |
| 130 | + p[1:][j*8+i]), |
| 131 | + end='') |
| 132 | + print() |
| 133 | + print("};") |
| 134 | + print() |
| 135 | + |
| 136 | + |
| 137 | +if __name__ == "__main__": |
| 138 | + import sys |
| 139 | + import argparse |
| 140 | + parser = argparse.ArgumentParser( |
| 141 | + description="Generate the generator polynomial for a Reed-Solomon code " |
| 142 | + "with the specified ecc_size.", |
| 143 | + allow_abbrev=False) |
| 144 | + parser.add_argument( |
| 145 | + 'ecc_size', |
| 146 | + type=lambda x: int(x, 0), |
| 147 | + help="Size of the error-correcting code in bytes. The resulting " |
| 148 | + "polynomial will also be this size.") |
| 149 | + parser.add_argument( |
| 150 | + '-p', |
| 151 | + type=lambda x: int(x, 0), |
| 152 | + default=0x11d, |
| 153 | + help="The irreducible polynomial that defines the field. Defaults to " |
| 154 | + "0x11d") |
| 155 | + parser.add_argument( |
| 156 | + '-T', '--no-truncate', |
| 157 | + action='store_true', |
| 158 | + help="Including the leading 1 byte. This makes the resulting " |
| 159 | + "polynomial ecc_size+1 bytes.") |
| 160 | + sys.exit(main(**{k: v |
| 161 | + for k, v in vars(parser.parse_args()).items() |
| 162 | + if v is not None})) |
0 commit comments