Skip to content

Code is right ??? #6

Open
Open
@smallsmallwood

Description

@smallsmallwood

orginal code:

    def forward(self, document_batch: torch.Tensor, device='cpu', bert_batch_size=0):
        **bert_output = torch.zeros(size=(document_batch.shape[0],
                                        min(document_batch.shape[1],
                                            bert_batch_size),
                                        self.bert.config.hidden_size), dtype=torch.float, device=device)
        for doc_id in range(document_batch.shape[0]):
            bert_output[doc_id][:bert_batch_size] = self.dropout(self.bert(document_batch[doc_id][:bert_batch_size,0],
                                                                           token_type_ids=document_batch[doc_id][:bert_batch_size, 1],
                                                                           attention_mask=document_batch[doc_id][:bert_batch_size, 2])[1])**
        output, (_, _) = self.lstm(bert_output.permute(1, 0, 2))
        output = output.permute(1, 0, 2)
        # (batch_size, seq_len, num_hiddens)
        attention_w = torch.tanh(torch.matmul(output, self.w_omega) + self.b_omega)
        attention_u = torch.matmul(attention_w, self.u_omega)  # (batch_size, seq_len, 1)
        attention_score = F.softmax(attention_u, dim=1)  # (batch_size, seq_len, 1)
        attention_hidden = output * attention_score  # (batch_size, seq_len, num_hiddens)
        attention_hidden = torch.sum(attention_hidden, dim=1)  # 加权求和 (batch_size, num_hiddens)
        prediction = self.mlp(attention_hidden)
        assert prediction.shape[0] == document_batch.shape[0]
        return prediction

modified:

    def forward(self, document_batch: torch.Tensor, device='cpu', bert_batch_size=0):
        **bert_output = torch.zeros(size=(document_batch.shape[0],
                                        # min(document_batch.shape[1], bert_batch_size),
                                        document_batch.shape[1],
                                        self.bert.config.hidden_size), dtype=torch.float, device=device)
        for doc_id in range(document_batch.shape[0]):
            bert_output[doc_id][:document_batch.shape[1]] = self.dropout(self.bert(document_batch[doc_id][:document_batch.shape[1], 0],
                                                                                   token_type_ids=document_batch[doc_id][:document_batch.shape[1], 1],
                                                                                   attention_mask=document_batch[doc_id][:document_batch.shape[1], 2])[1])**
        output, (_, _) = self.lstm(bert_output.permute(1, 0, 2))
        output = output.permute(1, 0, 2)
        # (batch_size, seq_len, num_hiddens)
        attention_w = torch.tanh(torch.matmul(output, self.w_omega) + self.b_omega)
        attention_u = torch.matmul(attention_w, self.u_omega)  # (batch_size, seq_len, 1)
        attention_score = F.softmax(attention_u, dim=1)  # (batch_size, seq_len, 1)
        attention_hidden = output * attention_score  # (batch_size, seq_len, num_hiddens)
        attention_hidden = torch.sum(attention_hidden, dim=1)  # 加权求和 (batch_size, num_hiddens)
        prediction = self.mlp(attention_hidden)
        assert prediction.shape[0] == document_batch.shape[0]
        return prediction

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions