|
| 1 | +#include <tensorflow/cc/client/client_session.h> |
| 2 | +#include <tensorflow/cc/ops/standard_ops.h> |
| 3 | +#include <tensorflow/core/framework/tensor.h> |
| 4 | + |
| 5 | +// Basic math operations using tensorflow |
| 6 | + |
| 7 | +// The sample demonstrates how to |
| 8 | +// - create various operations |
| 9 | +// - use placeholder and placeholderWithDefault |
| 10 | +// - use different overloads of Run method |
| 11 | + |
| 12 | +int main(int argc, char **argv) { |
| 13 | + |
| 14 | + using namespace tensorflow; |
| 15 | + using namespace tensorflow::ops; |
| 16 | + |
| 17 | + // create a root scope |
| 18 | + auto scope = Scope::NewRootScope(); |
| 19 | + |
| 20 | + // we are creating various local scopes |
| 21 | + // so that a new session object is created |
| 22 | + // for all the examples |
| 23 | + |
| 24 | + { |
| 25 | + // An example of doing addition |
| 26 | + // on constants |
| 27 | + |
| 28 | + ClientSession session(scope); |
| 29 | + |
| 30 | + auto a = Const(scope, 2); |
| 31 | + auto b = Const(scope, 3); |
| 32 | + |
| 33 | + auto c = Add(scope, a, b); |
| 34 | + |
| 35 | + std::vector<Tensor> outputs; |
| 36 | + TF_CHECK_OK(session.Run({c}, &outputs)); |
| 37 | + |
| 38 | + // we know that it will be scalar |
| 39 | + // we can also get the underlying data by calling flat |
| 40 | + std::cout << "Underlying Scalar value -> " << outputs[0].flat<int>() |
| 41 | + << std::endl; |
| 42 | + } |
| 43 | + |
| 44 | + { |
| 45 | + // An example of how to supply a variable (i.e. not a constant) |
| 46 | + // whose value is supplied at the time when we run the session |
| 47 | + |
| 48 | + ClientSession session(scope); |
| 49 | + |
| 50 | + // we will use Placeholder as the type for our variables |
| 51 | + auto a = Placeholder(scope, DT_INT32); |
| 52 | + auto b = Placeholder(scope, DT_INT32); |
| 53 | + |
| 54 | + // define the add operation that takes |
| 55 | + // the placeholders a and b as inputs |
| 56 | + auto c = Add(scope, a, b); |
| 57 | + |
| 58 | + std::vector<Tensor> outputs; |
| 59 | + |
| 60 | + // we now specify the values for our placeholders |
| 61 | + // note that the way Run method is called. It is quite |
| 62 | + // different from previous example. |
| 63 | + // |
| 64 | + // Here we are using this overload of Run method |
| 65 | + // Run(const FeedType& inputs, const std::vector<Output>& fetch_outputs, |
| 66 | + // std::vector<Tensor>* outputs) const; |
| 67 | + // |
| 68 | + // |
| 69 | + // which takes FeedType (alias of std::unordered_map<Output, Input::Initializer, OutputHash> |
| 70 | + // as the first argument. |
| 71 | + // Note - In std::unordered_map OutputHash is optional |
| 72 | + // So we just need to supply a map whose key of type "Output" and the |
| 73 | + // value that respect Initializer |
| 74 | + // |
| 75 | + // {a,2} & {b,3} would satisfiy this requirement since type 'a' & 'b' |
| 76 | + // is Output |
| 77 | + |
| 78 | + auto status = session.Run({ |
| 79 | + { |
| 80 | + {a, 2}, |
| 81 | + {b, 3} |
| 82 | + } }, {c}, &outputs); |
| 83 | + |
| 84 | + TF_CHECK_OK(status); |
| 85 | + |
| 86 | + // we know that it will be scalar |
| 87 | + // we can also get the underlying data by calling flat |
| 88 | + std::cout << "Underlying Scalar value -> " << outputs[0].flat<int>() |
| 89 | + << std::endl; |
| 90 | + } |
| 91 | + |
| 92 | + { |
| 93 | + // This is yet another example that makes use of Placeholder however |
| 94 | + // this time we want one of the placeholder to have a default value |
| 95 | + // |
| 96 | + // In other words, it does not need to be specified during the session |
| 97 | + // execution. if you give a new value it would accept it else would use |
| 98 | + // the default value |
| 99 | + |
| 100 | + ClientSession session(scope); |
| 101 | + |
| 102 | + // create an input |
| 103 | + auto defaultAInput = Input(8); |
| 104 | + |
| 105 | + // we will use Placeholder as the type for our variables |
| 106 | + auto a = PlaceholderWithDefault(scope, defaultAInput, PartialTensorShape()); |
| 107 | + auto b = Placeholder(scope, DT_INT32); |
| 108 | + |
| 109 | + // define the add operation that takes |
| 110 | + // the placeholders a and b as inputs |
| 111 | + auto c = Add(scope, a, b); |
| 112 | + |
| 113 | + std::vector<Tensor> outputs; |
| 114 | + |
| 115 | + // In this Run we are not specifying 'a' |
| 116 | + // so its default value i.e. 8 will be used |
| 117 | + auto status = session.Run({ |
| 118 | + { |
| 119 | + {b, 3} |
| 120 | + } }, {c}, &outputs); |
| 121 | + |
| 122 | + TF_CHECK_OK(status); |
| 123 | + |
| 124 | + std::cout << "Underlying Scalar value (using default placeholder value [8]) -> " << outputs[0].flat<int>() |
| 125 | + << std::endl; |
| 126 | + |
| 127 | + // here we do specify a value for placeholder 'a' i.e. 9 |
| 128 | + status = session.Run({ |
| 129 | + { |
| 130 | + {a, 9}, |
| 131 | + {b, 3} |
| 132 | + } }, {c}, &outputs); |
| 133 | + |
| 134 | + TF_CHECK_OK(status); |
| 135 | + |
| 136 | + std::cout << "Underlying Scalar value (after supplying new value [9]) -> " << outputs[0].flat<int>() |
| 137 | + << std::endl; |
| 138 | + |
| 139 | + } |
| 140 | + |
| 141 | + return 0; |
| 142 | +} |
0 commit comments