Skip to content

Commit 410cb08

Browse files
authored
Add files via upload
1 parent 6104d40 commit 410cb08

22 files changed

+836
-48
lines changed

dataprocess/Augmain.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
from dataprocess.Augmentation.ImageAugmentation import DataAug3D
22

33
if __name__ == '__main__':
4-
aug = DataAug3D(rotation=5, width_shift=0.01, height_shift=0.01, depth_shift=0, zoom_range=0,
4+
aug = DataAug3D(rotation=10, width_shift=0.01, height_shift=0.01, depth_shift=0, zoom_range=0,
55
vertical_flip=True, horizontal_flip=True)
6-
aug.DataAugmentation('data/traindata.csv', 15, aug_path='D:\challenge\data\KiPA2022\\trainstage\\augtrain/')
6+
aug.DataAugmentation('data/traindata.csv', 10, aug_path='D:\challenge\data\KiPA2022\\trainstage\\augtrain/')
6.71 KB
Binary file not shown.

dataprocess/data/trainaugdata.csv

Lines changed: 651 additions & 0 deletions
Large diffs are not rendered by default.

dataprocess/data/traindata.csv

Lines changed: 66 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,66 @@
1+
Image,Mask
2+
D:\challenge\data\KiPA2022\trainstage\train/Image/0.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/0.npy
3+
D:\challenge\data\KiPA2022\trainstage\train/Image/1.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/1.npy
4+
D:\challenge\data\KiPA2022\trainstage\train/Image/10.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/10.npy
5+
D:\challenge\data\KiPA2022\trainstage\train/Image/11.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/11.npy
6+
D:\challenge\data\KiPA2022\trainstage\train/Image/12.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/12.npy
7+
D:\challenge\data\KiPA2022\trainstage\train/Image/13.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/13.npy
8+
D:\challenge\data\KiPA2022\trainstage\train/Image/14.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/14.npy
9+
D:\challenge\data\KiPA2022\trainstage\train/Image/15.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/15.npy
10+
D:\challenge\data\KiPA2022\trainstage\train/Image/16.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/16.npy
11+
D:\challenge\data\KiPA2022\trainstage\train/Image/17.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/17.npy
12+
D:\challenge\data\KiPA2022\trainstage\train/Image/18.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/18.npy
13+
D:\challenge\data\KiPA2022\trainstage\train/Image/19.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/19.npy
14+
D:\challenge\data\KiPA2022\trainstage\train/Image/2.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/2.npy
15+
D:\challenge\data\KiPA2022\trainstage\train/Image/20.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/20.npy
16+
D:\challenge\data\KiPA2022\trainstage\train/Image/21.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/21.npy
17+
D:\challenge\data\KiPA2022\trainstage\train/Image/22.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/22.npy
18+
D:\challenge\data\KiPA2022\trainstage\train/Image/23.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/23.npy
19+
D:\challenge\data\KiPA2022\trainstage\train/Image/24.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/24.npy
20+
D:\challenge\data\KiPA2022\trainstage\train/Image/25.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/25.npy
21+
D:\challenge\data\KiPA2022\trainstage\train/Image/26.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/26.npy
22+
D:\challenge\data\KiPA2022\trainstage\train/Image/27.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/27.npy
23+
D:\challenge\data\KiPA2022\trainstage\train/Image/28.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/28.npy
24+
D:\challenge\data\KiPA2022\trainstage\train/Image/29.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/29.npy
25+
D:\challenge\data\KiPA2022\trainstage\train/Image/3.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/3.npy
26+
D:\challenge\data\KiPA2022\trainstage\train/Image/30.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/30.npy
27+
D:\challenge\data\KiPA2022\trainstage\train/Image/31.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/31.npy
28+
D:\challenge\data\KiPA2022\trainstage\train/Image/32.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/32.npy
29+
D:\challenge\data\KiPA2022\trainstage\train/Image/33.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/33.npy
30+
D:\challenge\data\KiPA2022\trainstage\train/Image/34.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/34.npy
31+
D:\challenge\data\KiPA2022\trainstage\train/Image/35.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/35.npy
32+
D:\challenge\data\KiPA2022\trainstage\train/Image/36.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/36.npy
33+
D:\challenge\data\KiPA2022\trainstage\train/Image/37.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/37.npy
34+
D:\challenge\data\KiPA2022\trainstage\train/Image/38.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/38.npy
35+
D:\challenge\data\KiPA2022\trainstage\train/Image/39.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/39.npy
36+
D:\challenge\data\KiPA2022\trainstage\train/Image/4.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/4.npy
37+
D:\challenge\data\KiPA2022\trainstage\train/Image/40.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/40.npy
38+
D:\challenge\data\KiPA2022\trainstage\train/Image/41.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/41.npy
39+
D:\challenge\data\KiPA2022\trainstage\train/Image/42.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/42.npy
40+
D:\challenge\data\KiPA2022\trainstage\train/Image/43.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/43.npy
41+
D:\challenge\data\KiPA2022\trainstage\train/Image/44.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/44.npy
42+
D:\challenge\data\KiPA2022\trainstage\train/Image/45.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/45.npy
43+
D:\challenge\data\KiPA2022\trainstage\train/Image/46.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/46.npy
44+
D:\challenge\data\KiPA2022\trainstage\train/Image/47.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/47.npy
45+
D:\challenge\data\KiPA2022\trainstage\train/Image/48.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/48.npy
46+
D:\challenge\data\KiPA2022\trainstage\train/Image/49.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/49.npy
47+
D:\challenge\data\KiPA2022\trainstage\train/Image/5.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/5.npy
48+
D:\challenge\data\KiPA2022\trainstage\train/Image/50.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/50.npy
49+
D:\challenge\data\KiPA2022\trainstage\train/Image/51.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/51.npy
50+
D:\challenge\data\KiPA2022\trainstage\train/Image/52.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/52.npy
51+
D:\challenge\data\KiPA2022\trainstage\train/Image/53.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/53.npy
52+
D:\challenge\data\KiPA2022\trainstage\train/Image/54.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/54.npy
53+
D:\challenge\data\KiPA2022\trainstage\train/Image/55.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/55.npy
54+
D:\challenge\data\KiPA2022\trainstage\train/Image/56.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/56.npy
55+
D:\challenge\data\KiPA2022\trainstage\train/Image/57.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/57.npy
56+
D:\challenge\data\KiPA2022\trainstage\train/Image/58.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/58.npy
57+
D:\challenge\data\KiPA2022\trainstage\train/Image/59.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/59.npy
58+
D:\challenge\data\KiPA2022\trainstage\train/Image/6.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/6.npy
59+
D:\challenge\data\KiPA2022\trainstage\train/Image/60.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/60.npy
60+
D:\challenge\data\KiPA2022\trainstage\train/Image/61.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/61.npy
61+
D:\challenge\data\KiPA2022\trainstage\train/Image/62.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/62.npy
62+
D:\challenge\data\KiPA2022\trainstage\train/Image/63.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/63.npy
63+
D:\challenge\data\KiPA2022\trainstage\train/Image/64.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/64.npy
64+
D:\challenge\data\KiPA2022\trainstage\train/Image/7.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/7.npy
65+
D:\challenge\data\KiPA2022\trainstage\train/Image/8.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/8.npy
66+
D:\challenge\data\KiPA2022\trainstage\train/Image/9.npy,D:\challenge\data\KiPA2022\trainstage\train/Mask/9.npy

dataprocess/data/validata.csv

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
Image,Mask
2+
D:\challenge\data\KiPA2022\trainstage\validation/Image/0.npy,D:\challenge\data\KiPA2022\trainstage\validation/Mask/0.npy
3+
D:\challenge\data\KiPA2022\trainstage\validation/Image/1.npy,D:\challenge\data\KiPA2022\trainstage\validation/Mask/1.npy
4+
D:\challenge\data\KiPA2022\trainstage\validation/Image/2.npy,D:\challenge\data\KiPA2022\trainstage\validation/Mask/2.npy
5+
D:\challenge\data\KiPA2022\trainstage\validation/Image/3.npy,D:\challenge\data\KiPA2022\trainstage\validation/Mask/3.npy
6+
D:\challenge\data\KiPA2022\trainstage\validation/Image/4.npy,D:\challenge\data\KiPA2022\trainstage\validation/Mask/4.npy

dataprocess/data/validata1.csv

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
Image,Mask
2+
D:\challenge\data\KiPA2022\trainstage\validation/Image/0.npy,D:\challenge\data\KiPA2022\trainstage\validation/Mask/0.npy

dataprocess/说明文档.txt

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
1、统计数据平均大小mean size,mean spacing: (array([153.29230769, 153.29230769, 197.49230769]), array([0.63416487, 0.63416487, 0.63416487]))
2+
2、图像缩放到固定大小(112x112x128)
3+
3、归一化采用(5,95)归一化范围
4+
4、损失采用focalloss

inference.py

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,30 @@
1+
import torch
2+
import os
3+
from model import *
4+
from dataprocess.utils import file_name_path
5+
import SimpleITK as sitk
6+
7+
# Use CUDA
8+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
9+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
10+
use_cuda = torch.cuda.is_available()
11+
12+
13+
def inferencemutilunet3dtest():
14+
newSize = (112, 112, 128)
15+
Unet3d = MutilUNet3dModel(image_depth=128, image_height=112, image_width=112, image_channel=1, numclass=1,
16+
batch_size=1, loss_name='MutilFocalLoss', inference=True,
17+
model_path=r'log\MutilUNet3d\focalloss\BinaryVNet2dSegModel.pth')
18+
datapath = r"F:\MedicalData\(ok)2022KiPA\dataset\test\image"
19+
makspath = r"F:\MedicalData\(ok)2022KiPA\dataset\test\label"
20+
image_path_list = file_name_path(datapath, False, True)
21+
for i in range(len(image_path_list)):
22+
imagepathname = datapath + "/" + image_path_list[i]
23+
sitk_image = sitk.ReadImage(imagepathname)
24+
sitk_mask = Unet3d.inference(sitk_image, newSize)
25+
maskpathname = makspath + "/" + image_path_list[i]
26+
sitk.WriteImage(sitk_mask, maskpathname)
27+
28+
29+
if __name__ == '__main__':
30+
inferencemutilunet3dtest()
-610 Bytes
Binary file not shown.
651 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)