|
| 1 | +# BF16ToGPU Pass |
| 2 | + |
| 3 | + |
| 4 | +BF16ToGPU pass transforms gpu dialect with bf16 dtype to a form that can be lowered to |
| 5 | +spirv and execute on Intel GPUs. |
| 6 | +Since bf16 is not a type directly supported by spirv, bf16 type is passes as an i16 type to |
| 7 | +spirv functions. This requires changing gpu.launch_func (caller) and gpu.func (callee). |
| 8 | + |
| 9 | +* Caller side changes are as follows: |
| 10 | +MLIR does not support direct casting of non scalar type, so caller side casting from |
| 11 | +bf16 type to i16 type bf16 is done indirectly by using memref.view |
| 12 | +gpu.alloc of bf16 type is replaced with gpu.alloc of i8 type. Then one view of bf16 and |
| 13 | +another view of i16 is created. Host side code that used original gpu.alloc is updated to |
| 14 | +use the bf16 view. And the i16 view is passed to gpu.launch_func, replacing old arguments. |
| 15 | + |
| 16 | +* Callee side changes are as follows: |
| 17 | +gpu.func's bf16 arguments replaced with i16 arguments. bf16 type usage inside gpu kernel body |
| 18 | +can be divided into two different types. First, operations that interpret bits according to |
| 19 | +bf16 specification. Second, operations that only care about the size of the types. |
| 20 | +First type of operations include most of Arithmetic dialect and Math dialect operations |
| 21 | +expect for bit cast. The operation's bf16 operands and results types are replaced with f32. |
| 22 | +bf16 operands are replaced with a seqeuence i16 to bf16 bitcast followed by bf16 to f32 extf. |
| 23 | +bf16 results are replaced with a sequence of f32 to bf16 truncf followed by bf16 to i16 bitcast. |
| 24 | +The resulting code, in summary, has two parts. |
| 25 | + 1) bf16 operations emulated by f32 operations with the help of widening and truncating. |
| 26 | + 2) bitcast operations between bf16 and i16 type. |
| 27 | + |
| 28 | + Second type of operations get bf16 operands and results type replaced with i16. |
| 29 | + |
| 30 | + |
| 31 | +## Example |
| 32 | + |
| 33 | +``` |
| 34 | + func.func @test(%arg0: memref<10x20xbf16>, %arg1: memref<10x20xbf16>) -> memref<10x20xbf16> { |
| 35 | + %c20 = arith.constant 20 : index |
| 36 | + %c10 = arith.constant 10 : index |
| 37 | + %c1 = arith.constant 1 : index |
| 38 | + %memref = gpu.alloc host_shared () : memref<10x20xbf16> |
| 39 | + memref.copy %arg1, %memref : memref<10x20xbf16> to memref<10x20xbf16> |
| 40 | + %memref_0 = gpu.alloc host_shared () : memref<10x20xbf16> |
| 41 | + memref.copy %arg0, %memref_0 : memref<10x20xbf16> to memref<10x20xbf16> |
| 42 | + %memref_1 = gpu.alloc host_shared () : memref<10x20xbf16> |
| 43 | + gpu.launch_func @test_kernel::@test_kernel blocks in (%c10, %c20, %c1) threads in (%c1, %c1, %c1) args(%memref_0 : memref<10x20xbf16>, %memref : memref<10x20xbf16>, %memref_1 : memref<10x20xbf16>) |
| 44 | + gpu.dealloc %memref_0 : memref<10x20xbf16> |
| 45 | + gpu.dealloc %memref : memref<10x20xbf16> |
| 46 | + return %memref_1 : memref<10x20xbf16> |
| 47 | + } |
| 48 | + gpu.module @test_kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.0, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume]>, api=OpenCL, #spirv.resource_limits<>>} { |
| 49 | + gpu.func @test_kernel(%arg0: memref<10x20xbf16>, %arg1: memref<10x20xbf16>, %arg2: memref<10x20xbf16>) kernel attributes {gpu.known_block_size = array<i32: 1, 1, 1>, gpu.known_grid_size = array<i32: 10, 20, 1>, spirv.entry_point_abi = #spirv.entry_point_abi<>} { |
| 50 | + %0 = gpu.block_id x |
| 51 | + %1 = gpu.block_id y |
| 52 | + %2 = memref.load %arg0[%0, %1] : memref<10x20xbf16> |
| 53 | + %3 = memref.load %arg1[%0, %1] : memref<10x20xbf16> |
| 54 | + %4 = arith.addf %2, %3 : bf16 |
| 55 | + memref.store %4, %arg2[%0, %1] : memref<10x20xbf16> |
| 56 | + gpu.return |
| 57 | + } |
| 58 | + } |
| 59 | +``` |
| 60 | + |
| 61 | +The Pass will change the IR to: |
| 62 | + |
| 63 | +``` |
| 64 | + func.func @test(%arg0: memref<10x20xbf16>, %arg1: memref<10x20xbf16>) -> memref<10x20xbf16> { |
| 65 | + %c20 = arith.constant 20 : index |
| 66 | + %c10 = arith.constant 10 : index |
| 67 | + %c1 = arith.constant 1 : index |
| 68 | + %c0 = arith.constant 0 : index |
| 69 | + %memref = gpu.alloc host_shared () : memref<400xi8> |
| 70 | + %view = memref.view %memref[%c0][] : memref<400xi8> to memref<10x20xbf16> |
| 71 | + %view_0 = memref.view %memref[%c0][] : memref<400xi8> to memref<10x20xi16> |
| 72 | + memref.copy %arg1, %view : memref<10x20xbf16> to memref<10x20xbf16> |
| 73 | + %c0_1 = arith.constant 0 : index |
| 74 | + %memref_2 = gpu.alloc host_shared () : memref<400xi8> |
| 75 | + %view_3 = memref.view %memref_2[%c0_1][] : memref<400xi8> to memref<10x20xbf16> |
| 76 | + %view_4 = memref.view %memref_2[%c0_1][] : memref<400xi8> to memref<10x20xi16> |
| 77 | + memref.copy %arg0, %view_3 : memref<10x20xbf16> to memref<10x20xbf16> |
| 78 | + %c0_5 = arith.constant 0 : index |
| 79 | + %memref_6 = gpu.alloc host_shared () : memref<400xi8> |
| 80 | + %view_7 = memref.view %memref_6[%c0_5][] : memref<400xi8> to memref<10x20xbf16> |
| 81 | + %view_8 = memref.view %memref_6[%c0_5][] : memref<400xi8> to memref<10x20xi16> |
| 82 | + gpu.launch_func @test_kernel::@test_kernel blocks in (%c10, %c20, %c1) threads in (%c1, %c1, %c1) args(%view_4 : memref<10x20xi16>, %view_0 : memref<10x20xi16>, %view_8 : memref<10x20xi16>) |
| 83 | + gpu.dealloc %memref_2 : memref<400xi8> |
| 84 | + gpu.dealloc %memref : memref<400xi8> |
| 85 | + return %view_7 : memref<10x20xbf16> |
| 86 | + } |
| 87 | + gpu.module @test_kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.0, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume]>, api=OpenCL, #spirv.resource_limits<>>} { |
| 88 | + gpu.func @test_kernel(%arg0: memref<10x20xi16>, %arg1: memref<10x20xi16>, %arg2: memref<10x20xi16>) kernel attributes {gpu.known_block_size = array<i32: 1, 1, 1>, gpu.known_grid_size = array<i32: 10, 20, 1>, spirv.entry_point_abi = #spirv.entry_point_abi<>} { |
| 89 | + %0 = gpu.block_id x |
| 90 | + %1 = gpu.block_id y |
| 91 | + %2 = memref.load %arg0[%0, %1] : memref<10x20xi16> |
| 92 | + %3 = memref.load %arg1[%0, %1] : memref<10x20xi16> |
| 93 | + %4 = arith.bitcast %2 : i16 to bf16 |
| 94 | + %5 = arith.extf %4 : bf16 to f32 |
| 95 | + %6 = arith.bitcast %3 : i16 to bf16 |
| 96 | + %7 = arith.extf %6 : bf16 to f32 |
| 97 | + %8 = arith.addf %5, %7 : f32 |
| 98 | + %9 = arith.truncf %8 : f32 to bf16 |
| 99 | + %10 = arith.bitcast %9 : bf16 to i16 |
| 100 | + memref.store %10, %arg2[%0, %1] : memref<10x20xi16> |
| 101 | + gpu.return |
| 102 | + } |
| 103 | + } |
| 104 | +``` |
| 105 | + |
| 106 | + |
| 107 | +As shown in the example above, the memref.allocs in the IR are referring to device buffer allocation and hence they are replaced with gpu.alloc from the gpu dialect. |
| 108 | + |
| 109 | +## Limitations of this pass. |
| 110 | + |
| 111 | + |
| 112 | +1. This pass only covers static shapes. |
| 113 | +2. This pass only supports scalar operations in kernel body. |
0 commit comments