Skip to content

Float16 inference fails with Llama-3.1-8B-Instruct on EMR (Intel Xeon 8592+) with IPEX enabled #857

@ParzvaI

Description

@ParzvaI

I'm encountering an issue while trying to run inference on the meta-llama/Llama-3.1-8B-Instruct model using the benchmarking script provided in the repo. Here's my setup:

Environment:

  • Env is created using instructions provided in intel-extension-for-pytorch/examples/cpu/llm/README.md
  • Model: meta-llama/Llama-3.1-8B-Instruct
  • Script: intel-extension-for-pytorch/examples/cpu/llm/inference/run.py
  • Hardware: Intel(R) Xeon(R) Platinum 8592+ (EMR machine)
  • Command:
    python run.py --benchmark -m meta-llama/Llama-3.1-8B-Instruct --dtype float16 --max-new-tokens 1024 --input-tokens 128 --num-warmup 2 --batch-size 32 --num-iter 1

Issue: When I run the above command with --dtype float16 and IPEX enabled, I get the following error:

RuntimeError: could not create a primitive descriptor for the inner product forward propagation primitive.

However, if I remove the --ipex flag, the script runs without crashing. But the verbose logs show that the source and destination weights are still in bf16, not float16, as expected:

onednn_verbose,v1,primitive,exec,cpu,matmul,brg_matmul:avx10_1_512_amx,undef,src:bf16::blocked:ab::f0 wei:bf16::blocked:ba::f0 dst:bf16::blocked:ab::f0,attr-scratchpad:user,,15232x4096:4096x14336,129.611

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions