diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index ce0777fdef68..4ffcdd9eae87 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -377,6 +377,7 @@ "FluxImg2ImgPipeline", "FluxInpaintPipeline", "FluxPipeline", + "FluxPAGPipeline", "FluxPriorReduxPipeline", "HiDreamImagePipeline", "HunyuanDiTControlNetPipeline", @@ -965,6 +966,7 @@ FluxImg2ImgPipeline, FluxInpaintPipeline, FluxPipeline, + FluxPAGPipeline, FluxPriorReduxPipeline, HiDreamImagePipeline, HunyuanDiTControlNetPipeline, diff --git a/src/diffusers/models/attention_processor.py b/src/diffusers/models/attention_processor.py index 23ae05e2ab96..ce64bb34d468 100755 --- a/src/diffusers/models/attention_processor.py +++ b/src/diffusers/models/attention_processor.py @@ -6162,6 +6162,123 @@ def __call__( return hidden_states +class PAGFluxAttnProcessor_2_0(AttnProcessor2_0): + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + # Save input for residual connection later + original_residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + B, C, H, W = hidden_states.shape + hidden_states = hidden_states.view(B, C, H * W).transpose(1, 2) + hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) + + def apply_attn(path): + B_local = path.shape[0] + if attn.group_norm is not None: + path = attn.group_norm(path.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(path) + key = attn.to_k(path) + value = attn.to_v(path) + + head_dim = query.shape[-1] // attn.heads + query = query.view(B_local, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(B_local, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(B_local, -1, attn.heads, head_dim).transpose(1, 2) + + attn_output = F.scaled_dot_product_attention( + query, key, value, dropout_p=0.0, is_causal=False + ) + attn_output = attn_output.transpose(1, 2).reshape(B_local, -1, attn.heads * head_dim) + attn_output = attn.to_out[0](attn_output) + attn_output = attn.to_out[1](attn_output) + return attn_output + + hidden_states_org = apply_attn(hidden_states_org) + + # Perturbed path (identity attention) + if attn.group_norm is not None: + hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) + hidden_states_ptb = attn.to_v(hidden_states_ptb) + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb], dim=0) + hidden_states = hidden_states.transpose(1, 2).view(2 * B, C, H, W) + + if attn.residual_connection: + # Expand residual to match batch size + residual = original_residual.expand_as(hidden_states) + hidden_states = hidden_states + residual + + return hidden_states / attn.rescale_output_factor + + +class PAGCFGFluxAttnProcessor_2_0(PAGFluxAttnProcessor_2_0): + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + original_residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + B, C, H, W = hidden_states.shape + hidden_states = hidden_states.view(B, C, H * W).transpose(1, 2) + uncond, cond, ptb = hidden_states.chunk(3) + + def apply_attn(path): + B_local = path.shape[0] + if attn.group_norm is not None: + path = attn.group_norm(path.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(path) + key = attn.to_k(path) + value = attn.to_v(path) + + head_dim = query.shape[-1] // attn.heads + query = query.view(B_local, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(B_local, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(B_local, -1, attn.heads, head_dim).transpose(1, 2) + + attn_output = F.scaled_dot_product_attention( + query, key, value, dropout_p=0.0, is_causal=False + ) + attn_output = attn_output.transpose(1, 2).reshape(B_local, -1, attn.heads * head_dim) + attn_output = attn.to_out[0](attn_output) + attn_output = attn.to_out[1](attn_output) + return attn_output + + uncond_out = apply_attn(uncond) + cond_out = apply_attn(cond) + + if attn.group_norm is not None: + ptb = attn.group_norm(ptb.transpose(1, 2)).transpose(1, 2) + ptb = attn.to_v(ptb) + ptb = attn.to_out[0](ptb) + ptb = attn.to_out[1](ptb) + + hidden_states = torch.cat([uncond_out, cond_out, ptb], dim=0) + hidden_states = hidden_states.transpose(1, 2).view(3 * B, C, H, W) + + if attn.residual_connection: + residual = original_residual.expand_as(hidden_states) + hidden_states = hidden_states + residual + + return hidden_states / attn.rescale_output_factor + ADDED_KV_ATTENTION_PROCESSORS = ( AttnAddedKVProcessor, diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index 268e5c2a8c39..20dc9410c137 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -191,6 +191,7 @@ "StableDiffusionXLPAGImg2ImgPipeline", "PixArtSigmaPAGPipeline", "SanaPAGPipeline", + "FluxPAGPipeline", ] ) _import_structure["controlnet_xs"].extend( diff --git a/src/diffusers/pipelines/pag/pipeline_pag_flux.py b/src/diffusers/pipelines/pag/pipeline_pag_flux.py new file mode 100644 index 000000000000..980a1f198380 --- /dev/null +++ b/src/diffusers/pipelines/pag/pipeline_pag_flux.py @@ -0,0 +1,920 @@ +# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Union + +import numpy as np +import torch +import torch.nn.functional as F +from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast + +from diffusers.image_processor import VaeImageProcessor +from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, FluxLoraLoaderMixin +from diffusers.models.autoencoders import AutoencoderKL +from diffusers.models.attention_processor import Attention +from diffusers.models.transformers import FluxTransformer2DModel +from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.schedulers import FlowMatchEulerDiscreteScheduler +from diffusers.utils import ( + USE_PEFT_BACKEND, + deprecate, + is_torch_xla_available, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import randn_tensor +from diffusers.models.attention_processor import PAGFluxAttnProcessor_2_0, PAGCFGFluxAttnProcessor_2_0 + + +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + >>> import torch + >>> from diffusers import FluxPipeline + >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) + >>> pipe.to("cuda") + >>> prompt = "A cat holding a sign that says hello world" + >>> # Depending on the variant being used, the pipeline call will slightly vary. + >>> # Refer to the pipeline documentation for more details. + >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] + >>> image.save("flux.png") +""" + + + +# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift +def calculate_shift( + image_seq_len, + base_seq_len: int = 256, + max_seq_len: int = 4096, + base_shift: float = 0.5, + max_shift: float = 1.15, +): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + """ + Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and + Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 + """ + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + # rescale the results from guidance (fixes overexposure) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + + +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, + `timesteps` must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default + timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` + must be `None`. + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class FluxPAGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): + r""" + The Flux pipeline for text-to-image generation. + + Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ + + Args: + transformer ([`FluxTransformer2DModel`]): + Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. + scheduler ([`FlowMatchEulerDiscreteScheduler`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_encoder_2 ([`T5EncoderModel`]): + [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically + the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). + tokenizer_2 (`T5TokenizerFast`): + Second Tokenizer of class + [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). + """ + + model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" + _optional_components = [] + _callback_tensor_inputs = ["latents", "prompt_embeds"] + + def __init__( + self, + scheduler: FlowMatchEulerDiscreteScheduler, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + text_encoder_2: T5EncoderModel, + tokenizer_2: T5TokenizerFast, + transformer: FluxTransformer2DModel, + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + transformer=transformer, + scheduler=scheduler, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels)) if getattr(self, "vae", None) else 16 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = ( + self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 + ) + self.default_sample_size = 64 + + def _get_t5_prompt_embeds( + self, + prompt: Union[str, List[str]] = None, + num_images_per_prompt: int = 1, + max_sequence_length: int = 512, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = self.tokenizer_2( + prompt, + padding="max_length", + max_length=max_sequence_length, + truncation=True, + return_length=False, + return_overflowing_tokens=False, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because `max_sequence_length` is set to " + f" {max_sequence_length} tokens: {removed_text}" + ) + + prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] + + dtype = self.text_encoder_2.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + _, seq_len, _ = prompt_embeds.shape + + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + return prompt_embeds + + def _get_clip_prompt_embeds( + self, + prompt: Union[str, List[str]], + num_images_per_prompt: int = 1, + device: Optional[torch.device] = None, + ): + device = device or self._execution_device + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer_max_length, + truncation=True, + return_overflowing_tokens=False, + return_length=False, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer_max_length} tokens: {removed_text}" + ) + prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) + + # Use pooled output of CLIPTextModel + prompt_embeds = prompt_embeds.pooler_output + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) + + return prompt_embeds + + def encode_prompt( + self, + prompt: Union[str, List[str]], + prompt_2: Union[str, List[str]], + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + lora_scale: Optional[float] = None, + max_sequence_length: int = 512, + ): + device = device or self._execution_device + + # Set LoRA scale + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + + if prompt_embeds is None: + # Normalize inputs + if isinstance(prompt, str): + prompt = [prompt] + if isinstance(prompt_2, str): + prompt_2 = [prompt_2] + batch_size = len(prompt) + + # Only cond and perturbed (skip uncond) + full_prompt = [] + full_prompt_2 = [] + for i in range(batch_size): + full_prompt.extend([prompt[i], prompt[i]]) # For CLIP + full_prompt_2.extend([prompt_2[i], prompt_2[i]]) # For T5 + + # Encode prompts + pooled_prompt_embeds = self._get_clip_prompt_embeds( + prompt=full_prompt, + device=device, + num_images_per_prompt=num_images_per_prompt, + ) + prompt_embeds = self._get_t5_prompt_embeds( + prompt=full_prompt_2, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + ) + + # Unscale LoRA + if self.text_encoder and isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 and isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + + # Dummy text_ids (updated shape for 2 prompts) + dtype = self.text_encoder.dtype if self.text_encoder else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 2).to(device=device, dtype=dtype) + + return prompt_embeds, pooled_prompt_embeds, text_ids + + def check_inputs( + self, + prompt, + prompt_2, + height, + width, + negative_prompt=None, + negative_prompt_2=None, + prompt_embeds=None, + negative_prompt_embeds=None, + pooled_prompt_embeds=None, + negative_pooled_prompt_embeds=None, + callback_on_step_end_tensor_inputs=None, + max_sequence_length=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError( + "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." + ) + + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") + + @staticmethod + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height // 2, width // 2, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + + latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape + + latent_image_ids = latent_image_ids.reshape( + latent_image_id_height * latent_image_id_width, latent_image_id_channels + ) + + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) + + return latents + + @staticmethod + def _unpack_latents(latents, height, width, vae_scale_factor): + batch_size, num_patches, channels = latents.shape + + height = height // vae_scale_factor + width = width // vae_scale_factor + + latents = latents.view(batch_size, height, width, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + + latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) + + return latents + + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + ): + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + + shape = (batch_size, num_channels_latents, height, width) + + if latents is not None: + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + return latents.to(device=device, dtype=dtype), latent_image_ids + + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + + return latents, latent_image_ids + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + negative_prompt: Union[str, List[str]] = None, # + negative_prompt_2: Optional[Union[str, List[str]]] = None, + true_pag_scale: float = 1.0, # + true_cfg_scale: float = 1.0, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 28, + timesteps: List[int] = None, + guidance_scale: float = 3.5, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + will be used instead + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. This is set to 1024 by default for the best results. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. This is set to 1024 by default for the best results. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 7.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. + + Examples: + + Returns: + [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` + is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated + images. + """ + + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + height, + width, + negative_prompt=negative_prompt, + negative_prompt_2=negative_prompt_2, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + + + has_neg_prompt = negative_prompt is not None or negative_prompt_embeds is not None + do_true_cfg = true_cfg_scale > 1.0 and has_neg_prompt + do_true_pag = true_pag_scale > 0 + + # encode positive prompts (always) + ( + prompt_embeds, + pooled_prompt_embeds, + text_ids, + ) = self.encode_prompt( + prompt=prompt, + prompt_2=prompt_2, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + + # encode negative prompts if needed + if do_true_cfg: + ( + negative_prompt_embeds, + negative_pooled_prompt_embeds, + _, + ) = self.encode_prompt( + prompt=negative_prompt, + prompt_2=negative_prompt_2, + prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=negative_pooled_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + + if do_true_cfg and not do_true_pag: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + elif not do_true_cfg and do_true_pag: + prompt_embeds = torch.cat([prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + elif do_true_cfg and do_true_pag: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + + # 4. Prepare latent variables + num_channels_latents = self.transformer.config.in_channels // 4 + latents, latent_image_ids = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 5. Prepare timesteps + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = latents.shape[1] + mu = calculate_shift( + image_seq_len, + self.scheduler.config.get("base_image_seq_len", 256), + self.scheduler.config.get("max_image_seq_len", 4096), + self.scheduler.config.get("base_shift", 0.5), + self.scheduler.config.get("max_shift", 1.15), + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + timesteps, + sigmas, + mu=mu, + ) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + if true_pag_scale > 0: + for name, module in self.transformer.named_modules(): + if isinstance(module, Attention): + if do_true_cfg: + module.processor = PAGCFGFluxAttnProcessor_2_0() + else: + module.processor = PAGFluxAttnProcessor_2_0() + + # 6. Denoising loop + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + # cfg only + if do_true_cfg and not do_true_pag: + latent_model_input = torch.cat([latents] * 2) + # pag only + elif not do_true_cfg and do_true_pag: + latent_model_input = torch.cat([latents] * 2) + # both + elif do_true_cfg and do_true_pag: + latent_model_input = torch.cat([latents] * 3) + # neither + else: + latent_model_input = latents + + + # handle guidance + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latent_model_input.shape[0]) + else: + guidance = None + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype) + + noise_pred = self.transformer( + hidden_states=latent_model_input, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=pooled_prompt_embeds, + encoder_hidden_states=prompt_embeds, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + )[0] + + if do_true_cfg and not do_true_pag: + # uncond + cond + uncond_pred, cond_pred = noise_pred.chunk(2) + noise_pred = uncond_pred + true_cfg_scale * (cond_pred - uncond_pred) + + elif not do_true_cfg and do_true_pag: + # cond + perturbed + cond_pred, perturbed_pred = noise_pred.chunk(2) + noise_pred = cond_pred + true_pag_scale * (perturbed_pred - cond_pred) + + elif do_true_cfg and do_true_pag: + # uncond + cond + perturbed + uncond_pred, cond_pred, perturbed_pred = noise_pred.chunk(3) + cfg_pred = uncond_pred + true_cfg_scale * (cond_pred - uncond_pred) + noise_pred = cfg_pred + true_pag_scale * (perturbed_pred - cond_pred) + + # else: no guidance + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + if output_type == "latent": + image = latents + + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return FluxPipelineOutput(images=image) diff --git a/tests/pipelines/pag/test_pag_flux.py b/tests/pipelines/pag/test_pag_flux.py new file mode 100644 index 000000000000..dd79a1f59746 --- /dev/null +++ b/tests/pipelines/pag/test_pag_flux.py @@ -0,0 +1,206 @@ +import inspect +import unittest + +import numpy as np +import torch +from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel + +from diffusers import ( + AutoencoderKL, + FlowMatchEulerDiscreteScheduler, + FluxPAGPipeline, + SD3Transformer2DModel, +) +from diffusers.utils.testing_utils import torch_device + +from ..test_pipelines_common import ( + PipelineTesterMixin, + check_qkv_fusion_matches_attn_procs_length, + check_qkv_fusion_processors_exist, +) + + +class FluxPAGPipelineFastTests(unittest.TestCase, PipelineTesterMixin): + pipeline_class = FluxPAGPipeline + params = frozenset([ + "prompt", + "height", + "width", + "guidance_scale", + "negative_prompt", + "prompt_embeds", + "negative_prompt_embeds", + ]) + batch_params = frozenset(["prompt", "negative_prompt"]) + test_xformers_attention = False + + def get_dummy_components(self): + torch.manual_seed(0) + transformer = SD3Transformer2DModel( + sample_size=32, + patch_size=1, + in_channels=4, + num_layers=2, + attention_head_dim=8, + num_attention_heads=4, + caption_projection_dim=32, + joint_attention_dim=32, + pooled_projection_dim=64, + out_channels=4, + ) + clip_text_encoder_config = CLIPTextConfig( + bos_token_id=0, + eos_token_id=2, + hidden_size=32, + intermediate_size=37, + layer_norm_eps=1e-05, + num_attention_heads=4, + num_hidden_layers=5, + pad_token_id=1, + vocab_size=1000, + hidden_act="gelu", + projection_dim=32, + ) + text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) + text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) + text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") + + tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") + tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") + tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") + + vae = AutoencoderKL( + sample_size=32, + in_channels=3, + out_channels=3, + block_out_channels=(4,), + layers_per_block=1, + latent_channels=4, + norm_num_groups=1, + use_quant_conv=False, + use_post_quant_conv=False, + shift_factor=0.0609, + scaling_factor=1.5035, + ) + + scheduler = FlowMatchEulerDiscreteScheduler() + + return { + "scheduler": scheduler, + "text_encoder": text_encoder, + "text_encoder_2": text_encoder_2, + "text_encoder_3": text_encoder_3, + "tokenizer": tokenizer, + "tokenizer_2": tokenizer_2, + "tokenizer_3": tokenizer_3, + "transformer": transformer, + "vae": vae, + } + + def get_dummy_inputs(self, device, seed=0): + generator = torch.manual_seed(seed) if str(device).startswith("mps") else torch.Generator(device="cpu").manual_seed(seed) + return { + "prompt": "A painting of a squirrel eating a burger", + "generator": generator, + "num_inference_steps": 2, + "guidance_scale": 5.0, + "output_type": "np", + "true_pag_scale": 0.0, + } + + def test_different_prompts(self): + pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) + + inputs = self.get_dummy_inputs(torch_device) + image1 = pipe(**inputs).images[0] + + inputs["prompt_2"] = "A completely different scene" + image2 = pipe(**inputs).images[0] + + assert np.abs(image1 - image2).max() > 1e-2 + + def test_different_negative_prompts(self): + pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) + + inputs = self.get_dummy_inputs(torch_device) + image1 = pipe(**inputs).images[0] + + inputs["negative_prompt"] = "ugly, blurry" + image2 = pipe(**inputs).images[0] + + assert np.abs(image1 - image2).max() > 1e-2 + + def test_pag_disable_equivalent_to_baseline(self): + pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) + + inputs = self.get_dummy_inputs(torch_device) + image_pag_disabled = pipe(**inputs).images[0] + + del inputs["true_pag_scale"] + image_baseline = pipe(**inputs).images[0] + + assert np.abs(image_pag_disabled - image_baseline).max() < 1e-3 + + def test_fused_qkv_projections(self): + device = "cpu" + components = self.get_dummy_components() + pipe = self.pipeline_class(**components).to(device) + + inputs = self.get_dummy_inputs(device) + image = pipe(**inputs).images + image_slice_original = image[0, -3:, -3:, -1] + + pipe.transformer.fuse_qkv_projections() + assert check_qkv_fusion_processors_exist(pipe.transformer) + assert check_qkv_fusion_matches_attn_procs_length(pipe.transformer, pipe.transformer.original_attn_processors) + + image_fused = pipe(**inputs).images + image_slice_fused = image_fused[0, -3:, -3:, -1] + + pipe.transformer.unfuse_qkv_projections() + image_disabled = pipe(**inputs).images + image_slice_disabled = image_disabled[0, -3:, -3:, -1] + + assert np.allclose(image_slice_original, image_slice_fused, atol=1e-3) + assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3) + + def test_pag_applied_layers(self): + device = "cpu" + components = self.get_dummy_components() + pipe = self.pipeline_class(**components).to(device) + + all_attn_keys = [k for k in pipe.transformer.attn_processors if "attn" in k] + original_procs = pipe.transformer.attn_processors.copy() + + pag_layers = ["blocks.0", "blocks.1"] + pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) + assert set(pipe.pag_attn_processors) == set(all_attn_keys) + + pipe.transformer.set_attn_processor(original_procs) + pag_layers = ["blocks.0"] + pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) + expected_keys = [k for k in all_attn_keys if k.startswith("transformer_blocks.0")] + assert set(pipe.pag_attn_processors) == set(expected_keys) + + pipe.transformer.set_attn_processor(original_procs) + pag_layers = [r"blocks\.(0|1)"] + pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) + assert len(pipe.pag_attn_processors) == 2 + + def test_forward_signature_consistency(self): + sig = inspect.signature(self.pipeline_class.__call__) + expected = set(self.params) + found = set(sig.parameters.keys()) + missing = expected - found + extra = found - expected + assert not missing, f"Missing parameters in pipeline: {missing}" + assert not extra - {'self'}, f"Unexpected parameters in pipeline: {extra}" + + def test_attention_mask_support(self): + pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) + inputs = self.get_dummy_inputs(torch_device) + inputs["attention_mask"] = torch.ones((1, 77)) + try: + pipe(**inputs) + except Exception as e: + assert "attention_mask" not in str(e), f"Pipeline should support attention_mask, but failed: {e}"