-
Notifications
You must be signed in to change notification settings - Fork 6.2k
Closed
Description
Model/Pipeline/Scheduler description
The original model weights and pipeline are available at:
https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev/tree/main
Quantized (GGUF) versions of the model can be found here:
https://huggingface.co/QuantStack/FLUX.1-Kontext-dev-GGUF/tree/main
Using the code below, I am able to run the original model for image generation and editing:
from diffusers import FluxKontextPipeline
import torch
from PIL import Image
import numpy as np
import random
np.random.seed(42)
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
).to("cuda")
guidance_scale = 2.5
steps = 30
def generate_image(
prompt: str,
start_image: Image = None,
guidance_scale: float = guidance_scale,
steps: int = steps,
) -> Image:
seed = random.randint(0, MAX_SEED)
print(f"Seed: {seed}")
if start_image:
start_image = start_image.convert("RGB")
return pipe(
image=start_image,
prompt=prompt,
guidance_scale=guidance_scale,
width=start_image.size[0],
height=start_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
return pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
It would be very helpful to have support for running the GGUF-quantized version of this model using the FluxKontextPipeline, allowing inference on consumer-grade GPUs with limited VRAM.
THANKS!
Open source status
- The model implementation is available.
- The model weights are available (Only relevant if addition is not a scheduler).
Provide useful links for the implementation
No response
Metadata
Metadata
Assignees
Labels
No labels