Skip to content

Commit b41abb2

Browse files
authored
[quant] QoL improvements for pipeline-level quant config (#11876)
* add repr for pipelinequantconfig. * update
1 parent f33b89b commit b41abb2

File tree

5 files changed

+262
-178
lines changed

5 files changed

+262
-178
lines changed

src/diffusers/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -40,6 +40,7 @@
4040
"models": [],
4141
"modular_pipelines": [],
4242
"pipelines": [],
43+
"quantizers.pipe_quant_config": ["PipelineQuantizationConfig"],
4344
"quantizers.quantization_config": [],
4445
"schedulers": [],
4546
"utils": [

src/diffusers/pipelines/pipeline_utils.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1096,6 +1096,8 @@ def load_module(name, value):
10961096
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
10971097
if device_map is not None:
10981098
setattr(model, "hf_device_map", final_device_map)
1099+
if quantization_config is not None:
1100+
setattr(model, "quantization_config", quantization_config)
10991101
return model
11001102

11011103
@property

src/diffusers/quantizers/__init__.py

Lines changed: 1 addition & 177 deletions
Original file line numberDiff line numberDiff line change
@@ -12,183 +12,7 @@
1212
# See the License for the specific language governing permissions and
1313
# limitations under the License.
1414

15-
import inspect
16-
from typing import Dict, List, Optional, Union
1715

18-
from ..utils import is_transformers_available, logging
1916
from .auto import DiffusersAutoQuantizer
2017
from .base import DiffusersQuantizer
21-
from .quantization_config import QuantizationConfigMixin as DiffQuantConfigMixin
22-
23-
24-
try:
25-
from transformers.utils.quantization_config import QuantizationConfigMixin as TransformersQuantConfigMixin
26-
except ImportError:
27-
28-
class TransformersQuantConfigMixin:
29-
pass
30-
31-
32-
logger = logging.get_logger(__name__)
33-
34-
35-
class PipelineQuantizationConfig:
36-
"""
37-
Configuration class to be used when applying quantization on-the-fly to [`~DiffusionPipeline.from_pretrained`].
38-
39-
Args:
40-
quant_backend (`str`): Quantization backend to be used. When using this option, we assume that the backend
41-
is available to both `diffusers` and `transformers`.
42-
quant_kwargs (`dict`): Params to initialize the quantization backend class.
43-
components_to_quantize (`list`): Components of a pipeline to be quantized.
44-
quant_mapping (`dict`): Mapping defining the quantization specs to be used for the pipeline
45-
components. When using this argument, users are not expected to provide `quant_backend`, `quant_kawargs`,
46-
and `components_to_quantize`.
47-
"""
48-
49-
def __init__(
50-
self,
51-
quant_backend: str = None,
52-
quant_kwargs: Dict[str, Union[str, float, int, dict]] = None,
53-
components_to_quantize: Optional[List[str]] = None,
54-
quant_mapping: Dict[str, Union[DiffQuantConfigMixin, "TransformersQuantConfigMixin"]] = None,
55-
):
56-
self.quant_backend = quant_backend
57-
# Initialize kwargs to be {} to set to the defaults.
58-
self.quant_kwargs = quant_kwargs or {}
59-
self.components_to_quantize = components_to_quantize
60-
self.quant_mapping = quant_mapping
61-
62-
self.post_init()
63-
64-
def post_init(self):
65-
quant_mapping = self.quant_mapping
66-
self.is_granular = True if quant_mapping is not None else False
67-
68-
self._validate_init_args()
69-
70-
def _validate_init_args(self):
71-
if self.quant_backend and self.quant_mapping:
72-
raise ValueError("Both `quant_backend` and `quant_mapping` cannot be specified at the same time.")
73-
74-
if not self.quant_mapping and not self.quant_backend:
75-
raise ValueError("Must provide a `quant_backend` when not providing a `quant_mapping`.")
76-
77-
if not self.quant_kwargs and not self.quant_mapping:
78-
raise ValueError("Both `quant_kwargs` and `quant_mapping` cannot be None.")
79-
80-
if self.quant_backend is not None:
81-
self._validate_init_kwargs_in_backends()
82-
83-
if self.quant_mapping is not None:
84-
self._validate_quant_mapping_args()
85-
86-
def _validate_init_kwargs_in_backends(self):
87-
quant_backend = self.quant_backend
88-
89-
self._check_backend_availability(quant_backend)
90-
91-
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list()
92-
93-
if quant_config_mapping_transformers is not None:
94-
init_kwargs_transformers = inspect.signature(quant_config_mapping_transformers[quant_backend].__init__)
95-
init_kwargs_transformers = {name for name in init_kwargs_transformers.parameters if name != "self"}
96-
else:
97-
init_kwargs_transformers = None
98-
99-
init_kwargs_diffusers = inspect.signature(quant_config_mapping_diffusers[quant_backend].__init__)
100-
init_kwargs_diffusers = {name for name in init_kwargs_diffusers.parameters if name != "self"}
101-
102-
if init_kwargs_transformers != init_kwargs_diffusers:
103-
raise ValueError(
104-
"The signatures of the __init__ methods of the quantization config classes in `diffusers` and `transformers` don't match. "
105-
f"Please provide a `quant_mapping` instead, in the {self.__class__.__name__} class. Refer to [the docs](https://huggingface.co/docs/diffusers/main/en/quantization/overview#pipeline-level-quantization) to learn more about how "
106-
"this mapping would look like."
107-
)
108-
109-
def _validate_quant_mapping_args(self):
110-
quant_mapping = self.quant_mapping
111-
transformers_map, diffusers_map = self._get_quant_config_list()
112-
113-
available_transformers = list(transformers_map.values()) if transformers_map else None
114-
available_diffusers = list(diffusers_map.values())
115-
116-
for module_name, config in quant_mapping.items():
117-
if any(isinstance(config, cfg) for cfg in available_diffusers):
118-
continue
119-
120-
if available_transformers and any(isinstance(config, cfg) for cfg in available_transformers):
121-
continue
122-
123-
if available_transformers:
124-
raise ValueError(
125-
f"Provided config for module_name={module_name} could not be found. "
126-
f"Available diffusers configs: {available_diffusers}; "
127-
f"Available transformers configs: {available_transformers}."
128-
)
129-
else:
130-
raise ValueError(
131-
f"Provided config for module_name={module_name} could not be found. "
132-
f"Available diffusers configs: {available_diffusers}."
133-
)
134-
135-
def _check_backend_availability(self, quant_backend: str):
136-
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list()
137-
138-
available_backends_transformers = (
139-
list(quant_config_mapping_transformers.keys()) if quant_config_mapping_transformers else None
140-
)
141-
available_backends_diffusers = list(quant_config_mapping_diffusers.keys())
142-
143-
if (
144-
available_backends_transformers and quant_backend not in available_backends_transformers
145-
) or quant_backend not in quant_config_mapping_diffusers:
146-
error_message = f"Provided quant_backend={quant_backend} was not found."
147-
if available_backends_transformers:
148-
error_message += f"\nAvailable ones (transformers): {available_backends_transformers}."
149-
error_message += f"\nAvailable ones (diffusers): {available_backends_diffusers}."
150-
raise ValueError(error_message)
151-
152-
def _resolve_quant_config(self, is_diffusers: bool = True, module_name: str = None):
153-
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list()
154-
155-
quant_mapping = self.quant_mapping
156-
components_to_quantize = self.components_to_quantize
157-
158-
# Granular case
159-
if self.is_granular and module_name in quant_mapping:
160-
logger.debug(f"Initializing quantization config class for {module_name}.")
161-
config = quant_mapping[module_name]
162-
return config
163-
164-
# Global config case
165-
else:
166-
should_quantize = False
167-
# Only quantize the modules requested for.
168-
if components_to_quantize and module_name in components_to_quantize:
169-
should_quantize = True
170-
# No specification for `components_to_quantize` means all modules should be quantized.
171-
elif not self.is_granular and not components_to_quantize:
172-
should_quantize = True
173-
174-
if should_quantize:
175-
logger.debug(f"Initializing quantization config class for {module_name}.")
176-
mapping_to_use = quant_config_mapping_diffusers if is_diffusers else quant_config_mapping_transformers
177-
quant_config_cls = mapping_to_use[self.quant_backend]
178-
quant_kwargs = self.quant_kwargs
179-
return quant_config_cls(**quant_kwargs)
180-
181-
# Fallback: no applicable configuration found.
182-
return None
183-
184-
def _get_quant_config_list(self):
185-
if is_transformers_available():
186-
from transformers.quantizers.auto import (
187-
AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_transformers,
188-
)
189-
else:
190-
quant_config_mapping_transformers = None
191-
192-
from ..quantizers.auto import AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_diffusers
193-
194-
return quant_config_mapping_transformers, quant_config_mapping_diffusers
18+
from .pipe_quant_config import PipelineQuantizationConfig

0 commit comments

Comments
 (0)