|
| 1 | +## How to convert any PyTorch project into a DistributedDataParallel project |
| 2 | + |
| 3 | +# Distributed training |
| 4 | +from torch.utils.data.distributed import DistributedSampler |
| 5 | +from torch.nn.parallel import DistributedDataParallel |
| 6 | +from torch.distributed import init_process_group, destroy_process_group |
| 7 | + |
| 8 | +import os |
| 9 | +import torch |
| 10 | +from torch.utils.data import Dataset, DataLoader, random_split |
| 11 | + |
| 12 | +# Dummy variables to make Pylance happy :D |
| 13 | +train_dataset = None |
| 14 | +local_rank = -1 |
| 15 | +global_rank = -1 |
| 16 | +num_epochs = 100 |
| 17 | + |
| 18 | +class MyModel: |
| 19 | + pass |
| 20 | + |
| 21 | +def initialize_services(): |
| 22 | + pass |
| 23 | + |
| 24 | +def collect_statistics(): |
| 25 | + pass |
| 26 | + |
| 27 | +def train(): |
| 28 | + if global_rank == 0: |
| 29 | + initialize_services() # W&B, etc. |
| 30 | + |
| 31 | + data_loader = DataLoader(train_dataset, shuffle=False, sampler=DistributedSampler(train_dataset, shuffle=True)) |
| 32 | + model = MyModel() |
| 33 | + if os.path.exists('latest_checkpoint.pth'): # Load latest checkpoint |
| 34 | + # Also load optimizer state and other variables needed to restore the training state |
| 35 | + model.load_state_dict(torch.load('latest_checkpoint.pth')) |
| 36 | + |
| 37 | + model = DistributedDataParallel(model, device_ids=[local_rank]) |
| 38 | + optimizer = torch.optim.Adam(model.parameters(), lr=10e-4, eps=1e-9) |
| 39 | + loss_fn = torch.nn.CrossEntropyLoss() |
| 40 | + |
| 41 | + for epoch in range(num_epochs): |
| 42 | + for data, labels in data_loader: |
| 43 | + loss = loss_fn(model(data), labels) # Forward step |
| 44 | + loss.backward() # Backward step + gradient synchronization |
| 45 | + optimizer.step() # Update weights |
| 46 | + optimizer.zero_grad() # Reset gradients to zero |
| 47 | + |
| 48 | + if global_rank == 0: |
| 49 | + collect_statistics() # W&B, etc. |
| 50 | + |
| 51 | + if global_rank == 0: # Only save on rank 0 |
| 52 | + # Also save the optimizer state and other variables needed to restore the training state |
| 53 | + torch.save(model.state_dict(), 'latest_checkpoint.pth') |
| 54 | + |
| 55 | + |
| 56 | +if __name__ == '__main__': |
| 57 | + local_rank = int(os.environ['LOCAL_RANK']) |
| 58 | + global_rank = int(os.environ['RANK']) |
| 59 | + |
| 60 | + init_process_group(backend='nccl') |
| 61 | + torch.cuda.set_device(local_rank) # Set the device to local rank |
| 62 | + |
| 63 | + train() |
| 64 | + |
| 65 | + destroy_process_group() |
| 66 | + |
0 commit comments